TESP Documentation
Release 1.0

Pacific Northwest National Laboratory

May 10, 2024

2

CONTENTS:

1 Introduction to Transactive Energy and TESP 1
1.1~ What Is Transactive Energy? 1
1.2 Transactive Energy Simulation Platform (TESP) 2
1.3 TESP Software Stack OVerview it it e e e e e 3
1.4 Overview of Transactive Energy Analysis Process 4

1.4.1 Value Model e 4
142 Designof Analysis e e e 4
143 Co-Simulation Implementation and Execution 5
1.44 Post-Processing and Analysis 5
1.5 Next Steps After TESP-Based Analysis 5
Installing and Building TESP 7
2.1 Create a Github account (somewhatoptional) 7
2.2 Inmstallation Guide e 7
2.2.1 Creating a Ubuntu Linux VM with VirtualBox 8
222 Creatinga WLS2on Windows 10 L 8
223 Running TESPinstall script e 8
224 Setting Up TESP Environment 9
225 Validate TESPinstallation 9
2.2.6 Trouble-shooting Installation (forthcoming) 13
TESP Demonstrations and Examples 15
3.1 TESP Capability Demonstrations e 15
31,1 doadshed L . 15
3.1.2 loadshed - Prototypical Feeder with Point-to-Point Communication Network 18
3.1.3 PYPOWERExample e 25
3.1.4 weatherAgent L. e e e 26
3.1.5 EnergyPlus Example e 27
3.1.6 TE30 Demonstration ot e e e e 28
317 DSOStub . . . 39
3.1.8 IEEE 8500 e 40
3.1.9 HouseExample e 43
3.1.10 GridLAB-D Player and Recorder Demonstration 47
3.1.11 GridLAB-D Model Modification 47
3.1.12 Datastore Demonstration L. o e e 52
3.2 TESPExample Analysis e e e 58
3.2.1 SGIP1 Analysis Example 58
322 DSO+T Analysis o o v i e e e 109
323 Indicesandtables L 125
3.2.4 Consensus-based Transactive Communities - Example and Documents 125

4 Developing and Customizing TESP

4.1 Introduction L e e e e e e e e e e e e
4.1.1 Standard Third-Party Tools

References

5.1 DesignReference L e e e e e e e e
5.1.1 Messages between Simulators and Agents Lo
5.1.2 TESPfor Agent Developers e
5.1.3 Output Metrics to Support Evaluation
5.1.4 GridLAB-D Enhancements e
5.1.5 Developing Valuation Scripts v i i e e e e e
5.1.6 Developing Agents i e e e e e e e e e e
5.1.7 tesp_support Package Design Lo L
5.1.8 Development Work Flow for tesp_support

52 CodeReference
521 TSOCaseData
5.2.2 st Directory StrucCture o vt i e e e e e e e e e e e e e e e
523 Linksto Dependencies

5.3 tesp_supportpackage e e e e e e
5.3.1 Subpackages e e e e e e

5.4 TESP Design Philosophy and DevelopmentPlans
54.1 Introduction
54.2 Challenges of aGeneric TESP
5.4.3 Addressing Challenges: The Design Philosophy of TESP
544 ThePath Forward for TESP.

5.5 Bibliography e

5.6 TESPLicense i

Archives

6.1 BuildingonUbuntu e
6.1.1 Preparation - Virtual Machine or Windows Subsystem for Linux (WSL)
6.1.2 Preparation - Build Toolsand Java
6.1.3 Preparation - Python 3 and Packages
6.1.4 Checkout PNNL repositories from github
6.1.5 Choosing and Configuring the Install Directories
6.1.6 FNCSand HELICS e
6.1.7 GridLAB-D
6.1.8 EnergyPlus e e
6.1.9 Buildeplus_agent L. L
6.1.10 Build EnergyPlus Weather File Utility
6.1.11 Buildns3 withHELICS
6.1.12 Prepare for Testing e e e e e e
6.1.13 Building Documentation e
6.1.14 Deployment - Ubuntu Installer
6.1.15 Deployment - Docker Container
6.1.16 DEPRECATED: MATPOWER, MATLAB Runtime (MCR) and wrapper

6.2 Building on Mac OS X (DEPRECATED) e i e et
6.2.1 BuildGridLAB-D.
6.2.2 Install Python Packages, Java, updated GCC
6.2.3 Checkout PNNL repositories from github
6.2.4 FNCS with Prerequisites (installed to /usr/local)
6.2.5 HELICS (installed to /usr/local, build with gcc9)
6.2.6 GridLAB-D with Prerequisites (installed to /ust/local)
6.277 ns-3withHELICS

6.2.8 EnergyPlus with Prerequisites (installed to /usr/local) 361

6.2.9 Buildeplus_agent L e e e e e e e 362

6.3 Building on Windows (DEPRECATED) e e 362
6.3.1 Install Python Packagesand Java 362

6.3.2 Set Up the Build Environment and Code Repositories 363

6.3.3 Build FNCS and HELICS Link with GridLAB-D, 364

6.3.4 Build EnergyPlus e e e e e 366

6.3.5 Buildeplus_agent L e e e e e 366

6.3.6 Buildns3 with HELICS e 366

7 Indices and tables 367
Bibliography 369
Python Module Index 371
Index 373

CHAPTER
ONE

INTRODUCTION TO TRANSACTIVE ENERGY AND TESP

1.1 What Is Transactive Energy?

Let’s start from the beginning: what is transactive energy? Though there are many definitions the one we’ll use here
comes from the GridWise Architecture Council [24]

A system of economic and control mechanisms that allows the dynamic balance of supply and demand
across the entire electrical infrastructure using value as a key operational parameter.

Transactive energy seeks to allow all actors in the electrical energy system to participate in the dynamic management
of the power system, most fundamentally, the moment-by-moment balancing of supply of electrical energy and its
demand. Typically, the balancing is done by only the largest actors in the system: the large bulk power system generators
and their customers, the utility companies (sometimes with the help of an intermediary market and system manager).
These interactions take on various forms from long-term contracts to auctions every few minutes and effectively form
the wholesale electricity market.

Most end users of that energy, though, are not part of this interaction and are generally ignorant of it. We may experience
some efforts by our local utility to include us through time-of-use tariffs where the price of energy changes in predictable
ways throughout the day or by peak-period pricing where the cost of energy rises dramatically for a few hours a few
times a year. These kinds of mechanisms are muted attempts to incentivize energy customers of the state of the power
system with higher retail prices intended to follow the general trend of wholesale prices. But because these retail tariffs
are pre-defined once and used for years to come, they have no ability to accurately reflect the state of the power system
on any given day.

Transactive energy seeks to change that by including all actors, including the end customers, in the management of the
power system by providing appropriate value signals to all participants such that the dynamic needs of the power system
can be addressed appropriately by all participants. If electrical energy is in short supply, a higher price to customers
can incentivize them to reduce consumption until further resources can be provisioned or the peak in demand has
passed. Conversely, when prices are low, consumers are signaled that energy-intensive activities (e.g. charging electric
vehicles, running pool pumps) will be less costly and will not place an undue stress on the power system.

By choosing to enable all participants in the management through appropriate value signals, transactive energy hopes
to use the flexibility in all existing actors behavior to manage the power system in a more efficient manner

TESP Documentation, Release 1.0

1.2 Transactive Energy Simulation Platform (TESP)

Transactive Systems Program

Traditionally, analysis of power systems has been split cleanly between the bulk power system (e.g. long-distance
transmission lines connecting large generation to large load centers like cities) and the distribution system (e.g. neigh-
borhoods). This separation has been motivated by different needs. The bulk power system is often concerned with
finding the most economical means of dispatching generators to meet the expected load or trying to determine the
most economical expansion of the power system. Distribution system planners have been concerned with appropri-
ately sizing the power lines the run through a neighborhood or what measures need to be made to ensure good voltage
management.

Transactive energy, by trying to include all actors as participants in the management of the system, necessarily breaks
down these analysis barriers and ties these two distinct analysis domains togethers. For appropriate analysis of a
transactive system, the analysis needs to allow participation of the management of the system by all actors which
means the analysis tools need to be able to represent all actors in appropriate ways. Furthermore, the models of the
participants need to be more fully fleshed out so that large loads (e.g. air conditioners, EV chargers, water heaters) can
be modeled in way that allows their loadshape to be altered as actors respond to value signals. And depending on the
particular analysis, further models that were not previously used may be needed such as those or rooftop solar panels
Or community energy storage.

Given these more complex analysis requirements, a more complex simulation technique was needed: co-simulation.
Co-simulation allows the dynamic integration of multiple simulation tools such that the outputs of each can can be
used as inputs to others. For example, the voltage at a particular transmission bus that is found when the power flow is
solved for the bulk power system can be used as the substation voltage when the distribution system needs to solve its
power flow. Conversely, the distribution system load can be fed back up to the bulk power system simulation for use
when it solves it’s power flow.

Co-simulation allows the analysis of more complex and larger scale power system problems than would be possible
otherwise but comes with the cost of complexity. The individual simulation tools used in the co-simulation need to
integrated into the co-simulation platform so they can send and receive messages with other tools. Each tool needs
to be configured to not only use the appropriate models but also to send and receive the correct messages. The data
coming out of all the simulation tools needs to be synthesized and analyzed to form conclusions.

The Transactive Energy Simulation Platform (TESP) has been developed by Pacific Northwest National Laboratory
(PNNL) under funding and direction by the United States Department of Energy to minimize the barriers of transactive
energy analysis (the complexities of co-simulation being chief among them) to allow for more efficient and effective
analysis of potential transactive energy schemes. Specifically, TESP aims to provide:

2 Chapter 1. Introduction to Transactive Energy and TESP

TESP Documentation, Release 1.0

* Appropriate simulation tools to model common transactive scenarios

* Integrated simulation tools into a co-simulation platform

* Generic models and other input datasets that may be needed for transactive analysis.
* Demonstrations of the various co-simulation capabilities

¢ Fully realized examples of transactive analysis

» All of the above in an easily managed software package that is readily customizable and altered for particular
analysis needs.

1.3 TESP Software Stack Overview

Fig. 1.1 shows the typical co-simulation software stack when using TESP for TE analysis.

* GridLAB-D covers the electric power distribution system [8] and residential buildings (OpenDSS is a similar
alternative).

* PYPOWER, MATPOWER/MOST or AMES covers the bulk power system and the transmission system operator
(TSO) [1, 28].

* EnergyPlus covers large commercial buildings [12]
* ns-3 is a communication system simulator that can also host software agents.

* The integrating message bus, using either the Hierarchical Engine for Large-scale Infrastructure Co-Simulation
(HELICS [20]) manages the time step synchronization and message exchange among all of the federated simu-
lation modules.

Message Bus (FNCS or HELICS)

Load Shed
10
e PYPOWER OpenDSS EnergyPlus ns-3 —
T T
| |

H

GridLAB-D
.

e MOST
o AMES

| | Weather

int ’ ' Thermostat
ntermediate Metrics and Dictionarie
—— (ISONorHDF5) —

Study Case

Configuration

Precooler

\ O\
)
1

Double Auction

Post
Processing
Python

Final
(_Valuations J

Buildings

e e e > TESP Developer Agents
Python, C++, Java

Fig. 1.1: TESP Rev 1 components federated through FNCS and/or HELICS.

1.3. TESP Software Stack Overview 3

TESP Documentation, Release 1.0

Assuming this software stack satisfies the needs of the particular analysis, the user interacts with TESP by configuring
simulation cases (magenta) and then running them. Simulation federates or Agents, write intermediate outputs and
metadata (green), which the user plots, post-processes and analyzes to reach conclusions.

(Some of of the simulators and agents in Fig. 1.1 have to be configured by hand. OpenDSS writes output in its native,
non-TESP format, and EnergyPlus writes output only through the Buildings agent; these are indicated with dashed
green lines. The ns-3 simulator doesn’t write output; it’s presently used in just one example, for which the GridLAB-D
outputs are adequate.)

Most of the Agents in Fig. 1.1 were implemented in the Python programming language, though custom code for TESP
can also be implemented in other languages like C++ and Java. To demonstrate, the Buildings agent was implemented
in C++ and one version of one of the examples distributed with TESP (Load Shed) has an agent was written in Java.

1.4 Overview of Transactive Energy Analysis Process

Given the complexity of many TE analysis and the variety of software components that may need to be used to perform
said analysis, taking time to clearly plan the analysis conceptually and practically will generally save time in the long
run. The following is an outline of the process PNNL has developed and implemented for TE Analysis.

1.4.1 Value Model

As TE is fundamentally built on the concept of value transactions or exchanges, developing a value model that explicitly
shows this can be helpful. These models are able to clearly show which system actors will be modeled in the TE analysis,
which ones are outside the system but involved in the value exchanges and which values are being exchanged through
the operation of the TE system.

With the value exchanges modeled, it is much easier to identify and define relevant performance mechanisms for the
TE system. Is an actor giving up comfort to save money (for example by adjusting a thermostat during a high-price
period)? If so, defining a metric to measure how much discomfort the actor is enduring could be important. How far
from the desired setpoint does the thermostat go? Are there times when a maximum or minimum setpoint is reached?
And how much money does the actor save by responding to this dynamic price? These metrics will be the measure by
which the TE system is evaluated and should be clearly related to the value model. Furthermore, generally, they should
be able to be calculated in both the transactive case and the base or business-as-usual case. If this is not the case, it is
likely a sign that the metrics have not been entirely thought through.

Finally, prior to writing any code, it is worth developing a flowchart or sequence diagram of how the TE system (or
even all simulated activities) will operate. This flowchart helps provide clarity of how and when the value exchanges
will take place and the process by which each actor accrues value. It will also serve as a good starting place when
writing the code to realize the TE system.

An example of these models can be found in the Valuation Model.

1.4.2 Design of Analysis

With a value model in place and the fundamental of the TE system outlined, the question then becomes one of methods
and means: what needs to be done to achieve the analysis goals? For TE studies, co-simulation will likely be a part of
the answer but is likely to be far from complete. It would not be unusual for new input datasets to be needed by various
entities in the co-simulation. There may be specific values that need to be defined either for the co-simulation (e.g.
renewable penetration level) or for use in post-processing the data (e.g. assumed cost of solar panels in the year of the
analysis).

Regardless, the critical element are the performance metrics that have been previously defined. These metrics define
specific input data and the goal of the analysis is to produce those values. Some of these may come directly from the
co-simulation but it would not be unusual for many of them to defined by separate analysis or from relevant literature.

4 Chapter 1. Introduction to Transactive Energy and TESP

TESP Documentation, Release 1.0

These data are used by a series of analysis steps, one after the other, to produce the required inputs for the final metrics.
Develop a plan for this analysis workflow is helpful in not only ensuring that all the data that is needed has been
accounted for but also helping to guide scoping decisions and being clear about where the extra effort may be needed
to achieve the analysis goals.

To show the impact of the TE system, to demonstrate the impacts of the system the design should make it clear in
some way what defines the base or business-as-usual case and what constitutes the transactive case(s). Keeping the
system models and inputs constant across the cases makes a direct apples-to-apples comparison possible in the key
performance metrics.

Lastly, in addition to the key performance metrics, there are likely to be supplemental data that is helpful in validating
the performance of the co-simulation and the analysis as a whole. These validation metrics would not generally be
defined by the value model because they generally are not tied to the value flows. For example, if the TE system adjusts
air-conditioning thermostats higher during high price periods and lower as the price drops a validation graph could
be created to show the thermostat setpoint throughout the day with the energy price overlaid. Though this graph and
its associated data are not necessarily needed to calculate the final value-based metrics it is useful to confirm that the
co-simulation that produced this data is working as expected.

An example of these models can be found in the Analysis Design Model.

1.4.3 Co-Simulation Implementation and Execution

With an analysis plan in place, now the direct work of implementation can begin. The analysis plan should clearly show
the analysis steps that are required (e.g. writing new transactive agent code, finding input data sets, writing scripts for
calculating final metrics).

The co-simulation will be run at some point and this may require computation resources beyond what a typical desktop
or laptop computer provides. There may need to be some extra work done in developing deployment plans and tools for
the co-simulation components. Relatedly, the datasets produced by the co-simulation could be very large and requires
more complex data handling and storage techniques.

1.4.4 Post-Processing and Analysis

With the final dataset produced from all the necessary analysis steps the validation and key performance metrics can
be calculated and reviewed. Ideally the presentations of the data show both that the co-simulation and the analysis
as a whole have been constructed correctly (validation) and that the TE system is having the expected impact. Both
the validation and the value-based metrics should have comparisons between base and transactive case(s) making the
impact of the transactive system clear.

1.5 Next Steps After TESP-Based Analysis

TESP is well-suited when trying to explore, design, and validate the fundamental principles of a new or modified
transactive mechanism. Having simulation results that show the mechanism works as expected and/or produces specific
value is an important first step but is by no means the last. Generally, simulations in TESP are not concerned with
appropriate access to data, data imperfections, protocols for the messages, and many other implementation details.

Users who wish to validate or demonstrate transactive mechanisms under operational constraints may consider
GridAPPS-D. GridAPPS-D provides a standards-based API for grid operations and control applications (or apps) to
interface with a simulation-based field emulator. Apps interact with the emulated as they would with an operating
system in the field; i.e., asynchronously without direct access to co-simulation variables. GridAPPS-D provides app
development tools, a library of services, and a standard model set to facilitate app development. Model management
and configuration capabilities and a test manager enable app validation under emulated abnormal grid conditions. For
more information visit the Grid APPS-D homepage and/or repository.

1.5. Next Steps After TESP-Based Analysis 5

https://doi.org/10.1109/ACCESS.2018.2851186
https://gridapps-d.org/
https://github.com/GRIDAPPSD

TESP Documentation, Release 1.0

6 Chapter 1. Introduction to Transactive Energy and TESP

CHAPTER
TWO

INSTALLING AND BUILDING TESP

TESP, as a software platform, provides much of its functionality through third-party software that it integrates to provide
the means of performing transactive analysis. All of this software is open-source and in every case can be built on any
of the three major OSs (Mac, Windows, and Linux). That said, TESP itself is only officially supported on Ubuntu Linux
simply as a means of reducing the support burden and allowing us, the TESP developers, to add and improve TESP
itself without spending the significant time required to ensure functionality across all three OSs. If you’re comfortable
with building your own software, a quick inspection of the build scripts we use to install TESP on Ubuntu Linux will
be likely all you need to figure out how to get it built and installed on your OS of choice.

The current supported method uses a set of custom build scripts to download source code from public repositories and
build from source. This particular method was chosen for a key reason: it allows you, the user, to pull down the latest
version of TESP (which may include bug fixes in a special branch) and have those changes quickly be realized in your
installation. Similarly, the live linking of the third-party tools’ repositories with git allows similar bugfix changes and
upgrades to those tools to be readily applied to your installation. This installation method provides not only working
executables of all the software but also all of the source code for said tools. In fact, for those that are more daring or
have more complex analysis requirements, this installation method allows edits to the source code of any of the software
tools and by re-compiling and installing that source (which the installation scripts automate) a custom version of any
of the tools can be utilized and maintained in this installation. (We’ll cover this in more detail in a dedicated section
on customizing TESP in Developing and Customizing TESP.)

2.1 Create a Github account (somewhat optional)

Many of the repositories holding the source code for the simulation tools used in TESP are hosted on Github. If you
want to be able to push code back up to these repositories, you’ll need a Github account. The Github user name and
email are typically provided as part of running the TESP install script but are technically optional and can be omitted.
TESP will still install but the ability to commit back into the repository will not exist.

2.2 Installation Guide

This guide will assume that TESP is being installed on a clean Ubuntu Linux installation or Windows 10 using WSL2.

For many, this will be a virtual machine (VM) and the good news is that there is a no-cost means of creating this VM
using Oracle’s VirtualBox. Other commercial virtualization software such as VMWare and Parallels will also do the
trick.

For Windows 10 users we can use WSL2. In many ways a it is like a virtual machine that allows shell commands just
as if it were Linux.

https://www.virtualbox.org

TESP Documentation, Release 1.0

2.2.1 Creating a Ubuntu Linux VM with VirtualBox

There is lots of documentation out there on installing Ubuntu on a VirtualBox VM and we won’t rehash those instruc-
tions here. Below are a few links you can try:

¢ Install Ubuntu on Oracle VirtualBox
¢ How to Install Ubuntu on VirtualBox? Here’s the Full Guide
¢ How to install Ubuntu on VirtualBox

You can get the OS disk image (.iso) from Ubuntu and mount it in the virtual machine for installation. Alternatively,
OSboxes provides a hard drive image with the OS already installed that you can install in your virtual machine.

A few notes:

¢ Installing TESP will require building (compiling) software from source which is generally resource inten-
sive. Giving the VM lots of compute resources (CPUs, memory) will be very helpful when installing (and
running) TESP.

* However you install Ubuntu, there is a good chance that some of the software included in the installation
is out of date since the image was made. Ubuntu should prompt you to update the software but if it doesn’t
manually run the “Update Software” application, otherwise TESP install will do for you.

* Make sure you install the VirtualBox Guest Additions to improve the integration with the host OS and the
overall user experience.

* Administrative access for the account where TESP will be installed is required.

2.2.2 Creating a WLS2 on Windows 10

The setup procedure for creating a WLS2 on Windows 10 very easy with these instructions . However, some further
adjustments maybe necessary with permissions and proxy.

2.2.3 Running TESP install script

Once you have a working Ubuntu/WLS2 on Windows installation, the TESP install process is straight-forward. From
a command prompt, issue the following commands:

Listing 2.1: TESP installation commands for Ubuntu/WLS2 on Win-
dow10

wget --no-check-certificate https://raw.githubusercontent.com/pnnl/tesp/main/scripts/
—tesp.sh

chmod 755 tesp.sh

./tesp.sh <Github user name> <Github email address>

In the last line, the optional name and email must be entered in that order, both must be included. For me, it looks like
this:

Listing 2.2: TESP sample installation script execution

[./tesp.sh trevorhardy trevor.hardy@pnnl.gov J

Running this script will kick off a process where all latest linux packages are installed, then the Python environment
is setup with the required packages installed after that the repositories are cloned locally and compiled one-by-one.
Depending on the computing resources available and network bandwidth, this process will generally take a few hours.

8 Chapter 2. Installing and Building TESP

https://brb.nci.nih.gov/seqtools/installUbuntu.html?
https://www.minitool.com/partition-disk/how-to-install-ubuntu-on-virtualbox.html
https://www.freecodecamp.org/news/how-to-install-ubuntu-with-oracle-virtualbox/
https://ubuntu.com/download/desktop
https://www.osboxes.org/virtualbox-images/
https://learn.microsoft.com/en-us/windows/wsl/install

TESP Documentation, Release 1.0

Due to this length of time, sudo credentials will likely expire at one or more points in the build process and will need
to be re-entered.

After getting TESP software installed and the executables built, the TESP installation will have created a fesp directory
the same directory level as the fesp.sh script. All installed files are descended from the fesp directory.

2.2.4 Setting Up TESP Environment

Prior to running any of the included examples, we need to be sure to set up the compute environment so that the TESP
software can be found by the system. The fespEnv file is added at the same level as the root tesp folder and it contains
all the environment configuration.

[source tespEnv

You will need to do this every time you open a new terminal. If the computing environment set-up you’re using allows
it, you can add this command to your “.bashrc” or equivalent so that it is automatically run for you each time you start
a terminal session.

2.2.5 Validate TESP installation

Once the installation process has finished there should be a folder name fesp where all the TESP software, data, and
models have been installed. There are several progressively more comprehensive ways to validate the TESP installation
process.

Check OS can find TESP software

TESP includes a small script that attempts to run a trivial command with each of the software packages it installs (typi-
cally checking the version). The script is located at ~/grid/tesp/scripts/build/versions.sh. This script runs automatically
at the end of the build and install process and produces and output something like this (version numbers will vary):

++++++++++++++ Compiling and Installing TESP software is complete! ++++++++++++++
TESP software modules installed are:

TESP 1.3.0

FNCS installed

HELICS 3.4.0-main-g®b3d894e7 (2023-10-03)
HELICS Java, 3.4.0-main-g0b3d894e7 (2023-10-03)

GridLAB-D 5.1.0-19475 (4ea6109e:develop:Modified) 64-bit LINUX RELEASE
EnergyPlus, Version 9.3.0-fd4546e21b (No OpenGL)

NS-3 installed

Ipopt 3.13.2 (x86_64-pc-linux-gnu), ASL(20190605)

t+++++++++++++ TESP has been installed! That's all folks! +++++++++++++

If you see any messages indicating command not found if indicates one of the software packages did not install correctly.

2.2. Installation Guide 9

TESP Documentation, Release 1.0

Check directory structure

An easy manual high-level check to see if TESP installed correctly is to look at the directory structure that was installed
and make sure everything ended up in the right place. A tree view from top-level fesp folder you should see something
like this:

grid

— tesp

— venv

— bin
python
python3
python3.8

— man

— include

— 1ib

L— python3.8

L— share

— man

L— doc

— tenv

— eplus_agent*®
— fncs*

— gridlabd*

— helics*

— ipopt*

— mini_federate
— ns3-*

L— test_comm

— energyplus

— include

— coin-or
— fncs.h
—— fncs.hpp
— gridlabd
— helics
L— ns3-dev

— fncs.jar

— helics-2.8.0.jar

— helics.jar -> helics-2.8.0.jar
— libhelicsJava.so

L— 1ibINIfncs.so

— cmake

— gridlabd

— libcoinasl.*
— libcoinmumps.*
— libfncs.*

— libhelics*

(continues on next page)

10 Chapter 2. Installing and Building TESP

TESP Documentation, Release 1.0

(continued from previous page)
— libipoptamplinterface.*
— libipopt.*
— libns3*
— libsipopt.*
L— pkgconfig
share
— doc
— gridlabd
— helics
— java
L— man

— Ames-V5.0

—— EnergyPlus

— fncs

— gridlab-d

— HELICS-src

— Ipopt

— KLU_DLL

— ns-3-dev

— ThirdParty-ASL
L— ThirdParty-Mumps

Shorter Autotest: Example Subset
A (relatively) shorter autotest script has been written that tests many (but not all) of the installed examples to verify
the installation was successful. This test can be run as follows and assumes the commandline prompt ‘~$’ in the TESP

root directory:

Listing 2.3: TESP example subset autotest

~$ source tespEnv

(TESP) ~$ cd ~grid/tesp/examples

(TESP) ~/grid/tesp/examples$ exec python3 autotest.py &> short.log &
(TESP) ~/grid/tesp/examples$ deactivate

~/grid/tesp/examples$

The first command is essential after starting a terminal session prior to running anything in TESP for the first time.
After running the first line above, the prompt now shows the prefix (TESP) being used for the variable environment. If
you don’t run the first line, simulations will generally fail for lack of being able to find their dependencies. If things
aren’t working, double-check to make sure your commandline shows the prefix (TESP).

The forth command, ‘deactivate’, returns the environment path to the state it was before the the first command started
and remove the (TESP) prefix from the prompt. All other environment variables are present but the TESP python
requirements may/may not be present, depending on your configuration.

The commandline that ran this autotest was executed in the background, so that can close the terminal, but don’t close
the VM. You can open terminal later and check progress by viewing the short.log. Even this subset of examples can take
several hours to run (roughly 4.9 hours in the results shown below) and at the end, prints a final results table showing
the runtime in seconds for each test:

2.2. Installation Guide 11

TESP Documentation, Release 1.0

Test Case(s)

Time Taken

GridLAB-D Player/Recorder
Loadshed - HELICS ns-3

Loadshed - HELICS Python
Loadshed - HELICS Java

Loadshed - HELICS/EPlus
Establishing baseline results
Load shedding w/o comm network
Load shedding over comm network
PYPOWER - HELICS

Houston,TX Baselines build types
Generated EMS/IDF files - HELICS
EnergyPlus EMS - HELICS

Weather Agent - HELICS

Houses

TE30 - HELICS Market

TE30 - HELICS No Market

4 Feeders - HELICS

Eplus w/Comm - HELICS

No Comm Base - HELICS

Eplus Restaurant - HELICS
SGIP1c - HELICS

180

0.891868
4.129848
1.
4
1

014755

.055216
.930494
.629668
.957783
.501483
.283039
.537504
.555593
.210505
.205831
.550353

297.

301.

824.

432.
3289.
2958.
3087.

990520
580143
673296
880265
462584
467020
110814

Total runtime will depend on the compute resources available and each example run serially.

Longer Autotest: Remaining examples

Listing 2.4: TESP remaining examples autotest

~$ source tespEnv
(TESP) ~$ cd ~/grid/tesp/examples

(TESP) ~/grid/tesp/examples$ exec python3 autotest_long.py &> long.log &

The commandline that ran this autotest was executed in the background, so that can close the terminal, but don’t close
the VM. You can open terminal later and check progress by viewing the long.log. This subset of examples can take
several days to run (roughly 49.8 hours in the results shown below) and at the end, prints a final results table showing

the runtime in seconds for each test:

Test Case(s)

Time Taken

SGIPla - HELICS 14
SGIP1b - HELICS 14
SGIPlc - HELICS 15
SGIP1d - HELICS 17
SGIPle - HELICS 19
SGIPlex - HELICS 19

PNNL Team IEEE8500

PNNL Team 30 - HELICS

PNNL Team ti30 - HELICS

PNNL Team 8500 - HELICS 13
PNNL Team 8500 TOU - HELICS 13

132.360023
143.111387
305.805641
289.504798
784.953376
623.103407
0.023067
98.790637
103.635829
872.056659
375.151752

(continues on next page)

12

Chapter 2. Installing and Building TESP

TESP Documentation, Release 1.0

PNNL Team 8500 Volt - HELICS
PNNL Team 8500 Base

PNNL Team 8500 VoltVar

PNNL Team 8500 VoltWatt

13513.567733
12338.000525
13278.476238
12584.246679

(continued from previous page)

2.2.6 Trouble-shooting Installation (forthcoming)

2.2. Installation Guide

13

TESP Documentation, Release 1.0

14 Chapter 2. Installing and Building TESP

CHAPTER
THREE

TESP DEMONSTRATIONS AND EXAMPLES

To help users of TESP to better understand how the software platform has been created and integrated, a number of
sample projects are included in the distribution of TESP and are divided into two categories: capability demonstrations
and analysis examples.

Capability demonstrations are sample projects that are relatively simple and intended to show off a single or very small
number of features of TESP. They may be a demonstration of the use of one of the third-party tools and its integration
into TESP or one of the custom agents that are provided with TESP. These demonstrations are not legitimate analysis
in and of themselves and the results from them are not intended to provide any significant insight into good transactive
system design principles or behaviors.

In contract, analysis examples are versions of analysis that have been performed in the past with TESP with specific
analysis objectives. These examples have much more comprehensive documentation within TESP and have produced
one or more publications that provide further detail. The versions of these analysis that are included in TESP are
not necessarily the same as those that were originally used but they are very similar and are examples of specific
transactive concepts or mechanisms. The results of the version of these examples that are distributed with TESP are
not only examples of how a transactive energy study could be assembled with TESP but the results produced by running
the examples will be as meaningful (though not necessarily identical) to those used to produce the original analysis
conclusions and publications.

3.1 TESP Capability Demonstrations

3.1.1 loadshed

Co-Simulation Architecture

This directory contains Python and Java versions of a loadshed example on the 13-bus IEEE test feeder, modeled
in GridLAB-D. In this model, a stand-alone external controller (helicshed.py and helicshed.java) send “OPEN” and
“CLOSED” commands to a switch in the GridLAB-D model (loadshed. glm) through a simple two-node communication
model in ns-3 (loadshedCommNetwork.cc).

15

TESP Documentation, Release 1.0

helicshed.py
loadshedCommMetwork.cc loadshed.gim
switch
commands switch
commands -
ns- ’ idLAB-D
-
1—';

helicshed.java

Running the Demonstration

loadshed - verify GridLAB-D, ns-3 and Python over HELICS

cd ~/grid/tesp/examples/capabilities/loadshedh
./clean.sh # Removes any left-over results and log files
. /runhpy.sh

./plot.sh

loadshed - Python without ns-3

cd ~/grid/tesp/examples/capabilities/loadshedh
./clean.sh # Removes any left-over results and log files
. /runhpy0. sh

./plot.sh

16 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

loadshed - verify GridLAB-D, ns3 and Java over HELICS

cd ~/grid/tesp/examples/capabilities/loadshedh
./clean.sh

./runhjava.sh

./plot.sh

Results

Running any of the above versions and plotting the results will yield the following graph.

Meter Voltages at m675

4000 1

3000

> 2000 -

Max LN
Min LN
Max LL
Min LL

1000 -

Real Power at Substation

3.5+ —
3.0 ‘

2.5
2.0 _—
= Total
= — Losses
1.5 1
1.0
0.5
0.0
T
1] 1 2 3 4 5 6
Hours
File Listing

It differs from the other examples, in not using the tesp_support Python package. Instead, three local source files have
been provided as possible starting points in developing your own source files in Python or Java.

¢ clean.sh - shell script that deletes any existing results and log file in the current directory.
* helics_gld_msgO0.json - GridLAB-D configuration file when running without ns-3.

* helics_gld_msg.json - GridLAB-D configuration file when running with ns-3.

* helics_gld_msg_no_pub.json

3.1. TESP Capability Demonstrations 17

TESP Documentation, Release 1.0

e helics_gld_msg_old_island.json

* helicshed0.py is the same loadshedding agent, implemented in Python for HELICS. Test with runhpy0.sh

* helicshed.java is the same loadshedding agent, implemented in Java for HELICS. Test with runhjava.sh

* helicshed.py is the same loadshedding agent, implemented in Python for HELICS with ns-3. Test with runhpy.sh
* helicsRecorder.json - HELICS configuration file for the helics_recorder used to capture the switch commands.

* loadshedCommNetwork.cc - ns-3 federate source code. Note that ns-3 logging is enabled only if ns-3 was built
in debug mode.

* loadshedCommNetworkConfig.json - HELICS configuration file for the ns-3 federate.
* loadshedConfig.json - HELICS configuration file for the Python or Java federate
* loadshed_dict.json

* loadshed.glm - GridLAB-D model of the IEEE 13-bus feeder containing the switch being controlled by the
Python or Java controllers.

* Makefile - defines the build process for the ns-3 model

* plot_loadshed.py - plotting program for the simulation results

e plot.sh - shell script used to plot the results

e README.rst - This file

* runjava.sh - launcher script for running the loadshed demo using a Java loadshed agent.

* runhpyO0.sh - launcher script for running the loadshed demo using a Python agent without using the ns-3 com-
munication network model.

* runhpy.sh - launcher script for running the loadshed demo using a Python agent include the ns-3 communication
model.

Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1.2 loadshed - Prototypical Feeder with Point-to-Point Communication Network

This particular version of the loadshed example offers the ability to build a point-to-point communication network
for a prototypical feeder [21]. It has been developed to introduce a manageable communication network modeled
in ns-3, which could include as nodes any of the nodes in a populated prototypical feeder. This allowed to build a
communication network of smaller or larger size to study the scalability of the ns-3 models for large power distribution
systems applications, and the impact the size of the communication network has on their performance.

Scope of the example

This particular example wants to demonstrate the following capabilities of TESP:

¢ Integrate a communication simulator, that is ns-3, that would allow modelling the cyber communication layer of
a distribution system.

 Allow for a customizable communication network model built through an ns-3 model considering the distribution
topology as an entry point.

¢ Demonstrate how the communication network structure affects the expected response of the distribution system,
due to latencies and distance between communication nodes.

18 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/blob/main/LICENSE

TESP Documentation, Release 1.0

Co-Simulation Architecture

The directory structure for this example follows the structure:

e RI-12.47-1 folder contains:

— RI-12.47-1_processed.glm - the populated prototypical feeder GridLAB-D model, obtained by running the
feederGenerator.py script;

— RI1-12.47-1_gridlabd.json - the HELICS configuration file for the GridLAB-D model containing the sub-
scription, publications, or the end points that allow the GridLAB-D federate to interact with other fed-
erates. In this particular case, several end points corresponding to particular loads in the system publish
their current power demand and subscribe to the command on their connection status, that is either to stay
IN_SERVICE or go OUT_OF_SERVICE when load needs to be dropped.

— recorders.glm - the recorder objects to save measurements in corresponding CSV files, at the level of each
of the nodes communicating through HELICS.

— Folders to store the results of the simulations in CSV format, that is the content of the files written using the
recorder objects in GridLAB-D. These folders have been manually created to save and distinguish among
the different simulated scenarios:

% outputs_noNS3_noLoadShed contains the results of a stand alone GridLAB-D simulation, in which
the system is not subject to any external commands to shed load.

% outputs_noNS3_LoadShed contains the results of the scenario in which ideal communication is estab-
lished between the Python federate emulating load shed control and GridLAB-D, that is there will be
no delay between the moment the command to shed load is initiated and the corresponding load is
actually disconnected from the grid and/or later reconnected.

% outputs_withNS3_LoadShed contains the results of the simulation run using a cyber-communication
network following the distribution network topology to route the load shedding commands from the
substation level down to the loads.

e RI-12.47-1-substation folder contains:

— RI-12.47-1_substation.py - the substation federate running at the level of the distribution model substation
node, monitoring points in the network, and deciding when and what loads should be dropped.

— RI-12.47-1_HELICS_substConf.json - the HELICS configuration file for the substation federate.

— loadshedScenario.json - the load shed scenario given in dictionary format to suggest when and what loads
are to be taken offline and/or brought back online. For example, the following dictionary entry

{
L...1,
"180":
{
"R1_12_47_1_tn_459_mhse_4": "OUT_OF_SERVICE",
"R1_12_47_1_tn_506_mhse_1": "IN_SERVICE"
3
[...]
}

L

is interpreted by the substation federate to command at second 180 in the co-simulation to
R1_12_47_1_tn_459_mhse_4 to go offline, while R1_12_47_1_tn_506_mhse_1 is brought online.

Caveat: The names of the assets in loadshedScenario.json file need to be exactly the same as the names in the
GridLAB-D model, and in order for the outcome to be as expected, these particular assets need to be among the
ones listed as HELICS subscribers for GridLAB-D model.

3.1.

TESP Capability Demonstrations 19

TESP Documentation, Release 1.0

e RI-12.47-1-communication folder contains:

— loadshed-p2p-network.cc - the ns-3 model that builds a point-to-point (p2p) network between a series of
nodes in the distribution system that require to communicate. The model is written to allow for an inter-
active way of selecting which nodes of the distribution system to be nodes in the communication network.
However, keep in mind that due to the linked hierarchy in the distribution network, some nodes might be
mandatory to make sure there is a path between two communicating ones.

Caveat: Before running the co-simulation including the communication network, or any time after a modification
is made to the model file, the model needs to be compiled using the provided Makefile, by running:

make clean
make

The following configuration parameters are given to the model through a JSON file, that is RI-12.47-
1_simConfig.json:

{
"Simulation": {
"Simulation_Duration": 300,
"Verbose": "true",
"Case_Name": "R1-12.47-1_HELICS",
"ns3_Network_Config": "./R1-12.47-1_ns3.json",
"ns3_EP_Config": "./R1-12.47-1_HELICS_ns3Conf. json",
"Anim_File": "./R1-12.47-1_HELICS_anim_P2P.xml",
"Routing_File": "./R1-12.47-1_HELICS_route_P2P.xml",
"Err_Log_File": "./R1-12.47-1_HELICS_P2P.log",
"Node_Loc_File": "./R1-12.47-1_HELICS_P2P_nodes_reduced.txt",
"Links_Loc_File": "./R1-12.47-1_HELICS_P2P_links.txt",
"Node_List_File": "./R1-12.47-1_HELICS_P2P.1lst"
}
}

It specifies:
— The duration of the simulation in seconds as Simulation_Duration.
— Whether the ns-3 simulator should detail debugging information through the flag Verbose.
— A name for the model as Case_Name.

— The network configuration file as ns3_Network_Config. This file in JSON format has been built based on
the distribution network topology and specifies all nodes in the system and how they are linked, depending
on the case design.

— The ns-3 federate HELICS configuration file as ns3_EP_Config. This file lists the points in the communi-
cation network model that are going to participate in information exchange through HELICS.

— The output animation file as Anim_File, if the model is set to save an output of the network dynamics.
— The routing table output file as Routing_File, if the model is set to save the network routing table.

— An error logging file as Err_Log_File to account for possible mistakes in building the communication
network.

— A list of all selected nodes with their names and location as Node_Loc_File.
— A list of all the links between the selected nodes as Links_Loc_File.

— A list of all existing node categories in the current feeder as Node_List_File.

20

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Running the demonstration

The three scenarios studied comparatively in this example require running different numbers of simulators federated
or not using HELICS. The following paragraphs details on how to run each of them. Keep in mind that the TESP
repository already contains previously obtained results for this case study, which are presented below while introducing
the co-simulation workflow.

Establishing baseline results

The first scenario establishes a baseline for the subsequent studies. It involves only the GridLAB-D model and therefore
it can be run independently, without the use of a HELICS-based co-simulation platform.

1. Inside TESP, navigate to the folder containing the GridLAB-D model, that is R/-12.47-1 folder in this case, e.g.

[${HOME}/tesp/examples/capabi1ities/loadshed—prototypical—communication/Rl— 12.47-1]

2. Inside this folder, at the terminal, run:

[gridlabd R1-12.47-1_processed.glm]

3. The following set of files are going to be generated inside the current directory:

* substation_load.csv - total load of the system measured at the substation level, at 1-second resolution, in W. The
baseline for the load at the substation level is shown in Fig. 3.1 in blue.

e RI 12 47 1 tn_ 15 mhse_1_rec.csv,R1_12_47 1 _tn_ 128 mhse_2 _rec.csv,R1_12_47 1 tn_459 mhse_4_rec.csv,
RI_12_47 _1_tn_506_mhse_I_rec.csv, RI_12_47_1_tn_564_mhse_4_rec.csv - recorded load for several system
loads in W, and their status (IN SERVICE or OUT OF SERVICE, meaning the load is connected to, or
disconnected from the grid, respectively) at 1-second resolution. For the baseline case, all loads are considered

to be connected to the grid the entire simulation period.

Substation R1_12_47_1_tn_15_mhse_1
45
4.53 3.0
1.5
0.0
(25 50 75 100 125 150 175 200 225 250 275
430 RI1_12_47_1_tn_128_mhse_2
1.5
1.0
447 05
— 00
3 25 50 75 100 125 150 175 200 225 250 275
= RI_12_47_1_tn_459_mhse_4
_‘;‘4.44 — L5
<
g E 10 /
'g‘ _g 05 ‘
=441 S 00
2 - 25 50 75 100 125 150 175 200 225 250 275
3 . R1_12.47_1_tn_564_mhse_4
438 4
)
0
435 25 50 75 100 125 150 175 200 225 250 275
R1_12_47_1_tn_506_mhse_1
no load shed Z
432 load shed, no communication network 2
load shed, with communication network o
25 50 75 100 125 150 175 200 235 2350 275 25 50 75 100 125 150 175 200 225 250 275
time [sec] time [sec]

Fig. 3.1: Loadshed with prototypical feeder example results

3.1. TESP Capability Demonstrations 21

TESP Documentation, Release 1.0

Load shedding control without communication network

This scenario emulates a load shedding scenario where the decision to shed specific loads is taken at the substation level
and the signals to disconnect and then, later, possibly re-connect loads are sent directly to the affected assets without
engaging any communication infrastructure. This in the ideal case when no network latency is present. This scenario
runs under TESP as a 2-federate co-simulation: the GridLAB-D running the feeder model, and a Python federate that
sends the disconnect/connect signals to certain loads.

1. Inside TESP, navigate to the example folder, e.g.

[${HOME} /tesp/examples/capabilities/loadshed-prototypical-communication

2. At the terminal, using the HELICS Command Line Interface (CLI), run

[helics run --path=./R1-12.47-1_broker_conf_noNS3.json]

The file R1-12.47-1_broker_conf_noNS3.json configures the co-simulation.

{
"broker": true,
"name": "LoadshedFederation",
"federates": [
{
"name": "R1-12.47-1-federate",
"host": "localhost",
"directory": "./R1-12.47-1",
"exec": "gridlabd -D USE_HELICS R1-12.47-1_processed.glm"
1
{
"name": "R1-12.47-1-substation-federate",
"host": "localhost",
"directory": "./R1-12.47-1-substation",

"exec": "python3 R1-12.47-1_substation.py --config R1-12.47-1_HELICS_substConf.
—Jjson --simTime 300"
}
1
}

This configuration file identifies:

* The number of federates as the length of the federates vector (e.g. 2 in this case),

* Each federate with a name, specific folder to run in, and the command to execute to launch the federate.
Specifically, the Python federate emulating a control and decision center runs with:

* —config or -c flags followed by the HELICS configuration file R1-12.47-1_HELICS_substConf.json.

o —simTime or -t flags followed by an integer representing the number of seconds for how long the federate should
run in co-simulation.

As seen in Fig. 3.1 in the right-hand side graphs in green, five loads are being disconnected from the grid at different
times, and then some of them are reconnected. Because the control signal reaches the controlled loads instantaneously
as there is no communication network between them and the substation, the distribution network sees a change in
overall load immediately and as expected (depicted in green in the left-hand side graphs).

22 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Load shedding control over communication network

The third scenario introduces ns-3 as the simulation federate for the communication layer realizing the cyber-connected
node infrastructure of the distribution network. In this particular case, as shown in Fig. 3.2, there exists a realizable
path from the substation to any other node in the distribution network and down to any load and DER (PV or battery).

substation

house meter PV meter node

battery| meter

house

inverter

PV

Fig. 3.2: Generic distribution network topology

The ns-3 model is set to either:

» Allow for interactive selection of which node category (substation, node, billing meter, house meter, house,
battery meter, battery, solar meter, PV, or inverter) to be considered in building the ns-3 point-to-point network
model, or

* Fix the communication network nodes through the ns-3 model file (requires re-compilation after any change
made).

As this example requires control of the house loads from the substation level, the following node categories are fixed
to be considered when building the ns-3 communication model to make sure each house load is reached from the
substation:

e substation,

¢ node,

* billing meter,
* house meter.

This implies that from a total of 7,590 connected points in the distribution feeder (7,589 links), only 4,412 (4,411 links)
are considered. The final communication network developed for this example considering the prototypical feeder R1-
12.47-1 in [21] is shown in Fig. 3.3, which also highlights the location of the substation and the 5 controlled loads.

To run this scenario, follow the steps:

1. Inside TESP, navigate to the example folder, e.g.

[$ {HOME}/tesp/examples/capabilities/loadshed-prototypical-communication

2. At the terminal, using the HELICS Command Line Interface (CLI), run

3.1. TESP Capability Demonstrations 23

TESP Documentation, Release 1.0

R1.12 47_1

R1_12_47_1 @y15eph

@ billing meter (1602)
@ house (1594)

@ primary feeder node (1215)
128_mhse_2

R1_12 47 @bstggion

@ substation (1)

Rls 12,4753-4) 506_mhse 1
< A
* 3
"~ 1
R1_12 a8 s6a_mhse 4
—
—
=
e 2 2 ¥
, s 3 :
Py
R1.12 47_1_@§#8g'¥nhse 4

Fig. 3.3: Communication network topology

[helics run --path=./R1-12.47-1_broker_conf_withNS3. json

The file R1-12.47-1_broker_conf_withNS3.json configures the co-simulation.

{
"broker": true,
"name": "LoadshedFederation",
"federates": [
{
"name": "R1-12.47-1-federate",
"host": "localhost",
"directory": "./R1-12.47-1",
"exec": "gridlabd -D USE_HELICS R1-12.47-1_processed.glm"
3
{
"name": "R1-12.47-1-substation-federate",
"host": "localhost",
"directory": "./R1-12.47-1-substation",

"exec": "python3 R1-12.47-1_substation.py --config R1-12.47-1_HELICS_substConf.
—Jjson --simTime 300"

}
{
"name": "R1-12.47-1-communication",
"host": "localhost",
"directory": "./R1-12.47-1-communication",
"exec": "./loadshed-p2p-network --simConfigFile=R1-12.47-1_simConfig.json"
}
1
(continues on next page)
24 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

(continued from previous page)
B

The extra entry in this configuration file compared to the one in the previous scenario is related to the ns-3 federate that
is set to run in the communication network folder with R1-12.47-1_simConfig.json as the federate configuration file.

In Fig. 3.1 the results of this scenario are shown in the orange color. In this example, for study purpose only, the delay
on all point-to-point channels has been set to /00 ms. This leads to a delayed response from the controlled loads going
offline or online, as seen when compared to the their response when the control signals are not transmitted through a
communication network. Moreover, when compared among the controlled loads, the latencies are variable as they also
depend on the distance between the source and destination in the communication network and the number of hops the
signal has to go through, fact corroborated by the physical distances between substation and controlled loads in Fig.
3.3.

Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1.3 PYPOWER Example

This example simply verifies that PYPOWER will run a 9-bus case and communicate over FNCS. To run and plot it:

./runpp.sh
python3 plots.py

In addition, traced FNCS messages will be written to pptracer.out

This example simply verifies that PYPOWER will run a 9-bus case and communicate over HELICS. To run and plot it:

./runhpp. sh
python3 plots.py

TODO: Player/Recorder comments
Directory contents:
* clean.sh; script that removes output and temporary files
* helics_loads.txt; HELICS player file for distribution loads system
* helicsRecorder.txt; HELICS recorder file for different system outputs
* NonGLDLoad.txt; text file of non-responsive loads on transmission buses
* plots.py; makes 1 page of plots for a case; eg ‘python plots.py’
* ppcase.json; PYPOWER system definition
e pptracer.yaml; FNCS configuration for the message tracing utility
* pypower.yaml; FNCS configuration for PYPOWER
» pypowerConfig.json; HELICS configuration for PYPOWER
e README.md; this file
* runhpp.sh; script for running the case - HELICS
* runpp.sh; script for running the case - FNCS
Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1. TESP Capability Demonstrations 25

https://github.com/pnnl/tesp/blob/main/LICENSE
https://github.com/pnnl/tesp/blob/main/LICENSE

TESP Documentation, Release 1.0

3.1.4 weatherAgent
This weather agent needs an environment variable WEATHER _CONFIG to be set and point to the WeatherConfig.json
file.

It reads in the csv weather data and the example data file is provided in this folder. If it is hourly data, the agent can do
quadratic interpolation.

In order to match results from a TMY3 file containing the same measurements, it’s necessary to provide GridLAB-D
with the weather location’s latitude, longitude and time zone meridian (in degrees, and &It; O if in the Western hemi-
sphere). Initial values matching the start-time csv data may also be provided to GridLAB-D. See the WeatherTester.glm
file in this directory for an example.

To run the example, invoke ./runh.sh from a command prompt. This creates a weather data file from TMY3. Then it
runs a GridLAB-D simulation two ways, once using the original TMY3 and again using the weather agent reading a
data file. When the script completes, invoke python3 compare_csv.py from a command prompt; this verifies that both
methods give essentially the same result.

The WeatherConfig.json sets the following parameters:
e “name”: string, has to be “weather”,
e “StartTime”: string, start of the simulation, for example “2000-01-01 00:00:00”,

* “time_stop”: string, length of the simulation, unit can be “d, day, days, h, hour, hours, m, min, minute, minutes,
s, sec, second, seconds”, for example “70m”,

* “time_delta”: string, this is the time step that fncs broker registers and uses to find peer time for other federates,
peer time is registered at handshake and cannot be changed by fncs::update_time_delta() function call, unit can
be “d, day, days, h, hour, hours, m, min, minute, minutes, s, sec, second, seconds”, for example “1s”,

* “publishinterval”: string, how often the agent publishes weather data, for example “5Sm”,
» “Forecast”: integer, 1: true for forecast; 0, NO forecast,
» “ForecastLength”: string, how far into the future the forecast should be, for example “24h”,

e “PublishTimeAhead”: string, how much time ahead of the supposed publish time to publish the data, unit can
be “d, day, days, h, hour, hours, m, min, minute, minutes, s, sec, second, seconds”, for example “8s”,

» “AddErrorToForecast”: integer, 1: true; 0: false,
* “broker”: string, has to be “tcp://localhost:55707,
* “forecastPeriod”: integer, this is the period/cycle used in weather forecast to calculate the error, for example 48,

* “parameters”: are parameters needed in the weather forecast to add error, each weather factor could
have different parameters, for now, only the parameters for temperature are set, the other ones do not
have good tested parameters

— “temperature”’: name of the factor, we also have humidity, solar_direct, solar_diffuse, pressure,
wind_speed

% “distribution”: 0: Uniform distribution; 1: Triangular distribution; 2: Truncated normal distri-
bution

% “P_e_bias”: pu maximum bias at first hour, for example: 0.5,

% “P_e_envelope”: pu maximum error from mean values, for example: 0.08,

% “Lower_e_bound”: pu of the maximum error at the first hour, for example: 0.5
The following topics are published by the agent:

» weather/temperature

26 Chapter 3. TESP Demonstrations and Examples

tcp://localhost:5570

TESP Documentation, Release 1.0

» weather/humidity

» weather/solar_direct

¢ weather/solar_diffuse

» weather/pressure

» weather/wind_speed

» weather/temperature/forecast
» weather/humidity/forecast

¢ weather/solar_direct/forecast
¢ weather/solar_diffuse/forecast
 weather/pressure/forecast

» weather/wind_speed/forecast

Copyright (c) 2017-2023 Battelle Memorial Institute

3.1.5 EnergyPlus Example

This example simply verifies that EnergyPlus will run a building model, and communicate over HELICS with an agent
and message tracer. To run and plot it:

./runh. sh
python3 plots.py

In addition, traced messages will be written to recorder and log files.
Subdirectories:
* eplusHelicsExample; custom-built HELICS example for testing
e forSchoolBase; custom-built school dual controller EMS files for FNCS and HELICS
* Windows; helper scripts to run on Windows (no longer supported outside of Docker or VM)
File Directory:
e archivedEms.idf ; original version of the custom-built school dual controller EMS (deprecated)
* batch_ems_case.sh; top-level script that simulates all reference buildings with EMS; calls run_seasonal_cases.sh
* batch_plots.sh; top-level script that plots all reference buildings with EMS; calls seasonal_plots.sh
* bridge_eplus_agent.json; configuration file for runfh_bridge.sh example (deprecated)
* clean.sh; script that removes output and temporary files
* compile_png.py; compiles all plots from batch_plots.sh into a Word document
* eplus.yaml; FNCS configuration for EnergyPlus
* eplus_agent.yaml; FNCS configuration for EnergyPlus agent
¢ eplus_agentH.yaml; HELICS configuration for EnergyPlus agent
* eplusH.json; HELICS configuration for EnergyPlus
¢ helicsRecorder.json; JISON configuration of the HELICS recorder

* helicsRecorder.txt; text configuration file for the HELICS recorder (deprecated)

3.1. TESP Capability Demonstrations 27

TESP Documentation, Release 1.0

* kill23404.sh; helper script that stops processes listening on port 23404 for HELICS (Linux/Mac)
* kill5570.sh; helper script that stops processes listening on port 5570 for FNCS (Linux/Mac)
* make_all_ems.sh; after run_baselines.sh, this script produces the EMS programs in separate IDF files

* make_ems.sh; makes a single EMS program from the contents of ‘output’, which typically comes from School-
Base.idf

* plots.py; makes 1 page of plots for a case; eg ‘python plots.py’

* prices.txt; sample price changes, published over FNCS to the building’s transactive agent

e README.md; this file

* run.sh; Linux/Mac script for the case using FNCS (deprecated)

* run2.sh; FNCS version of the secondary school building the auto-generated EMS

* run_baselines.sh; simulate the reference buildings for one year, in preparation to make EMS programs
* run_ems_case.sh; runs a single HELICS-based reference building with given dates and price response

* run_seasonal_cases.sh; calls run_ems_case.sh for one reference building, summer and winter, with and without
price response

* runfh_bridge.sh; runs FNCS EnergyPlus, bridged through a dual agent to HELICS federates (deprecated)
* runh.sh; Linux/Mac script for the case using HELICS
» SchoolBase.idf ; custom-built school building without the EMS
* seasonal_plots.sh;
* tabulate_responses.py;
e tracer.yaml; FNCS configuration for the message tracing utility
Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1.6 TE30 Demonstration

Co-Simulation Architecture

The TE30 demonstration was developed as part of NIST’s TE Challenge This example file comprises 30 houses and a
school building on a small, stiff, distribution circuit. It provides a medium-level test case for multiple HVAC transactive
agents, with or without the double-auction real-time energy market.

The co-simulation data-exchange architecture is shown in the figure below. EnergyPlus is used the model a school
that is attached to the distribution system and has a transactive agent that receives building state information and based
on market conditions, adjusts the HVAC system’s setpoints. The power consumption of the building is also sent to
GridLAB-D.

GridLAB-D simulates the physics of the power system and and the houses, providing electrical state information to
the bulk power system model and thermodynamic and electrical information on the houses in the model. Each house
also has rooftop solar PV whose production is calculated by GridLAB-D. The distribution system operator (DSO) is
modeled as an external python agent, and for performance reasons, the residential HVAC transactive agents are included
in this code; this demonstration calls this the “substation” object.

The HVAC transactive controllers collect information on the state of their constituent houses and use that to form bids
for the real-time energy market. The DSO (substation) aggregates these bids and presents them to the bulk power
system real-time energy market which is run by PYPOWER. PYPOWER collects these bids and performs an economic

28 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/blob/main/LICENSE
https://www.nist.gov/el/smart-grid/hot-topics/transactive-energy-modeling-and-simulation-challenge

TESP Documentation, Release 1.0

dispatch operation which defines the locational marginal price (LMP) for real-time energy at each transmission node,
including the one to which the GridLAB-D model is attached; the LMP is communicated to the DSO. PYPOWER also
calculates the physics of the bulk power system by running a powerflow which defines the voltage at the substation of
the GridLAB-D model.

DS0O and HVAC controllers (substation)

load bids

energy price

EnergyPlus

cooling setpoint,
building state heating setpoint
house temperatures,
HVAC states,

energy price

HVAC setpoints, load,

energy price

o substation voltage
school building power 4 S
} -
dLAB-D >

substation load
PYPOWER
TE_Challenge.glm 9-bus model
eplus_agent_helics

Running the Demonstration

NOTE: This example can take several minutes to run. After launching the appropriate “run” shell script check the status
of the co-simulation by looking at the output of the “TE_ChallengeHO.csv” or “TE_ChallengeH.csv”, depending on
which run script is being used. This can be most easily done by running fail -f TE_ChallengeHO.csv and looking for
new values to stop being written to the file.

TE30 without the transactive market

python3 prepare_case.py # creates additional configuration files, only needs to be run.
—once

./runh@®.sh

python3 plots.py TE_ChallengeH®

TE30 with the transactive market

python3 prepare_case.py # not needed if already run for TE_ChallengeH®
./runh.sh
python3 plots.py TE_ChallengeH

3.1. TESP Capability Demonstrations 29

TESP Documentation, Release 1.0

Results

Running any of the above versions and plotting the results will yield the following graph.

Transactive HVAC Controllers

Base case
Prices at F1_house_AS5_hvac Surplus
— Cleared —— Consumer
0.05{ — Bid 0.04 1 —— Supplier
0.04 0.02
0.03
a 2 0001
=] =}
0.02
-0.02
0.01
-0.04
0.00
Bid Quantity at F1_house_A5_hvac Total Controller Bids
334
120
3.24 115
31 110 4
3 3
= ~ 105
3.0 4
100
2.9
95
2.8 %0
T T T T r T T T T T T T
0 10 20 30 a0 50 0 10 20 30 40 50
Hours Hours

Transactive case

30 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

kw

Prices at F1_house_B4_hvac

0.30 1

0.25

0.20 4

0.15 4

0.10 1

0.05 1

0.00 4

—— Cleared
— Bid

Bid Quantity at F1_house B4 hvac

3.8 4

3.7 9

3.6 4

3.5

3.4 1

3.3 1

3.2

3.1+

3.0 1

o
=
(=}

School (EnergyPlus)

Base case

50

usD

kw

Surplus

80

60

40 -

201

—— Consumer
—— Supplier

Total Controller Bids

125

120 A

115 A

110

105 A

100 A

95

90

20
Hours

3.1. TESP Capability Demonstrations

31

TESP Documentation, Release 1.0

Volume Average Cooling Real-time Price Occupants
801 0.04 4 2504
791 002 200
. 784 — Actual i
2 —— Setpoint E 0.00 4 0
® 77 | — schedule &
| 100 {
-0.02 A
76
50
75 4 —0.04
0 L
Volume Average Heating Building Electrical Demand Uncomfortab\e Hours
80.0 250 | — Total 0.08 4
775 | — HVAC
75.0 4 2001 0.06 4
L 7257 — Actual 1501 “
o | —— Setpoint 3 0.04
3 700 —— Schedule * 2
67.51 1004
65.04 50 4 0.021
62.5
60,01 : : : : ‘ o1 : I : : : —
Average Temperatures DX/EIectncaI Coil Demand Sensible Zone Volumes
105 o
—— outdoor 175 { — cooling 7 I |
1004 — Indoor —— Heating 251
109 hvac
95 1254 n 209
E —— Total
w 100 - J
& 90 4 5 E o - jooling
3] — Ny
P 75 § 104 Heating
E
50 A =
80]
25+ 5
75 o] o L—J
0 0 20 0 2 50 0 10 20 B an 50 0 0 20 0 2 5t
Hours Hours Hours
Transactive case
Volume Average Cooling Real-time Price Occupants
gq 4 — Actual_ 0.30 250 4
—— Setpoint 0.25
82 4 —— schedule) 200 -
0.20 1
80 £ 150 -
T £ 015
© &
78 0.10 1 100
76 1 0.05 4 50 4
0.00 4 04 —
T4 = T T T T T T T T T
Volume Average Heating Buﬂdmg Electrlcal Demand Uncomfortable Hours
300
80 — Total 0.08
2501 —— HVAC
757 200 4 0.06
N — Actual n
& 70 — Ssetpoint 3 1501 S 004
= -T— Schedule 2
65 1001
0.02
60 4 50
0 0.00 1 —
T T T T T T T T T T T T T T T T T
Average Temperatures DX/Electrical Coil Demand Sensible Zone Volumes
105 - 200 4
— Cooling 25 |
100 4 —— Heating
150 1 _ 4
a5 4 HVAC ™ 20
w Qutdoor £ Total
o 907 = 100 B — Cooling
= —— Indoor X o 3
g5 4 S04 Heating
50 A s
80 5
75 4 o4 0l L
T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 0 40 50 0 10 20 0 40 50
Hours Hours Hours
32 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Bulk Power System Generators (PYPOWER)

Base case
Demands at 7 Output from unit 1
200 4 [-y
- 2 2001
S g —r
£ £ —q
= 100 _ = 1004
H Real) 2
—— Reactive ,__d———"—-—_m
' Pricesat 7 | ' ‘ ‘ Outplt from unit 2 '
200
041 — Real —r
—) [—
< Reactive g Q
3 024 £ 100
2 3
Bl =
oo | . ’___'__Mu_ﬁ__
Voltages at 7 Output from unit 3
100
0.98 | — P
-4 —
£ Q
2 0.97 1 Magnitude = 50 4
J— =
0.96 1 vmax g
— Vmin
T T T T 01 T T T
Generator Prices Output from unit 4
049 ynit1 604 — P
— [—
EJ o N
2% L4 z
a uni % 204
0.0 1= ; . . T . 01 : : : T .
0 10 20 30 a0 50 0 10 20 30 a0 50
Hours Hours

Transactive case

3.1. TESP Capability Demonstrations 33

TESP Documentation, Release 1.0

Demands at 7

Output from unit 1

r—-—-'-’\ﬁ Fee —
200 - |
« » 200 —q
£ 150 A g
£ £
% 100 Real % 100
50 4 —— Reactive ,..m___n.a——'—“h———..__.d-"_’l_-'_l——
Prices at 7 ‘ " Outplt from unit 2 ‘ ‘
034 200
| = Real — P
—— Reactive 1509 —
£ 0.2 £ a
= >
< 5 100 4
o1/ 2
o = 0 M
0.0 1 (R : ‘ - ‘ :
Voltages at7 Output from unit 3
100
0.98 . P
- {1 —
g Q
30977 Magnitude § 501
— Vmax g 25
0964 ___ \min
T T 01 T T,
Generator Prices Output from unit 4
60
—r
x40 — Q
g
£
5 20
H
0
0 10 20 30 40 50

Residential HVAC (GridLAB-D)

Base case

Hours

34

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

HVAC at 30 Houses

kw
ES

1!
|

Transactive case

T T T T
20 30 40 50
Hours

3.1. TESP Capability Demonstrations

35

TESP Documentation, Release 1.0

HVAC at 30 Houses

90

85

70 A

kw
-

Hours

Rooftop Solar PV (GridLAB-D)

Substation Real Power at network_node Temperature over 30 Houses Total Inverter Power No Capacitors Voltage Violation Counts
10
— Total 87.5 404 — Range A Hi
300] — Losses 50 1409 - Range B Hi
—— Houses : 08 — Range Alo
120 -
250 HVAC 825 . Range B Lo
WH —— No Voltage
100
200 80.0 06 25
804 — Solar
H E] 20
2 50 g 775 — Battery
60 4
5.0 04 15
100
404
725 10
50 — Max |] 02 R
70.0 — min
— Ag]
° 675 ° 0.0 °
Hours
Voltage over 31 Meters House Air at F1_house_A11 Total Meter Bill o No Regulators Voltage Violation Durations
100 — Max 350 4 4000 { —— Range A Hi
— Min 85 Range B Hi
% 300 4 08 35001 — Range ALo
3000 —— RangeBlo
2504 —— No Voltage
98 — Mean 06 2500
— Min 200 4 E
= — Max 5| 2000
97 8
— setC T 150 04 &
SetH g 1500
9% 1
100 1000
02
95 509 500
0 0
0.0
0 10 20 30 40 50 0 10 20 30 40 5 00 02 04 06 08 10 0 10 20 30 40 50
Hours Hours Hours

Transactive case

36 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Substation Real Power at network_nodEemperature over 30 Houses Total Inverter Power No Capacitors Voltage Violation Counts
= 10
— Total — Range A Hi
300 —— Losses 140 175 Range B Hi
— 0.8 —_
Houses 1204 150 Range A Lo
250 —— HVAC —— Range B Lo
WH 100 + 12.5 4 — No Voltage
200 1. 0.6
= i 80 — Solar 100
~ 150 8 —— Battery
60 0.4 75
100 4 201 5.0
0.2
501 20 25
o] o] Y —
v T T T T T T T T 0.0 v T T T T T T
Hours.
Voltage over 31 Meters House Air at F1_house_A11 Total Meter Bill No Regulators Voltage Violation Durations
10
100 4 — Max 90 - 350 4 bsgp { — Range A Hi
— Min Range B Hi
99 — Avg | 85 300 4 08 — Range A Lo
000 { — Range B Lo
80 4 2501 — No Voltage
98 4 0.6 ”
e 754 200 4 g (1500
8 g G S
971 r 150 &
70 0.4 1000
— Mean
96 | 65 4 — Min 1004
— Max 500
60 — serc |] oz
95 I
SetH o] o |
v r T 55 - r r T r r 0.0 v T T T T r T
0 20 40 0 20 40 0 20 40 00 02 04 06 08 10 0 20 40
Hours Hours Hours. Hours

Residential Votlage (GridLAB-D)

Base case

Voltage at 31 Meters

98.0 1

97.5 1

97.07

96.5

96.0

Min Voltage [%]

95.5 1

95.0 4

94.5 1

100 4

99 7

98 1

97 1

Max Voltage [%]

96

95 4

Hours

3.1. TESP Capability Demonstrations 37

TESP Documentation, Release 1.0

Transactive case

Voltage at 31 Meters

1

Min Voltage [%

100

99 4

98 4

97 4

Max Voltage [%]

96

95 1

Hours

File Listing

clean.sh - script that removes output and temporary files

DeDeprecate.py

eplus.json - HELICS configuration file for EnergyPlus

eplus_agent.json - HELICS configuration file for the EnergyPlus agent
monitor.json - Monitor configuration file

NonGLDLoad.txt - text file of non-responsive loads on transmission buses
outputs_te.glm - defines GridLAB-D data to record

phase_A.player

phase_B.player

phase_C.player

plots.py - makes 5 pages of plots for a case: eg ‘python plots.py TE_Challenge’
prepare_case.py - sets up the dictionaries and GLD/Agent FNCS configurations for all cases
pypower.json - HELICS configuration file for PYPOWER

README.rst - this file

38

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

* runh.sh - script for the case with market
* runh0.sh - script for the case without transactive real-time energy market

* te30_pp.json - PYPOWER bulk power system model definition

TE_Challenge.glm - GridLAB-D system definition

TE_Challenge_monitor.json - HELICS configuration for monitor
Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1.7 DSO Stub

The dsostub example demonstrates TESP’s ability to replicate the power system and market behavior of a distribution
system without doing the detailed modeling that is often done for transactive studies such as in GridLAB-D. dsostub
replicates the behavior in aggregate, allowing the computation burden in assessing transactive systems under develop-
ment to be dramatically reduced.

dsostub supports a real-time and day-ahead double-auction energy market implementation. The bulk power system
physics and market models are run by PSST with the CBC solver used for solving the security constrained unit com-
mitment problem as part of clearing the day-ahead market. PSST with CBC also solves a security-constrained economic
dispatch problem to clear the five-minute real-time energy market.

Almost of the parameters for the models used in this dsostub example are defined in the “case_config.json” file; this
includes the transmission and generation system model. The “dsostub.py” script has a price-responsive curve hard-
coded into the real-time market bidding.

This TESP capability was published in the IEEE Power and Energy Society General Meeting in July of 2021 and the
publication can be found in [11] (https://doi.org/10.1109/PESGM46819.2021.9638030).

Running the demonstration

./runstub.sh "dsostub_case"
cd dsostub_case
./run.sh

File Directory:
* case_config.json: configuration data co-simulation including bulk-power system definition, source data file ref-
erences, and general configuration and metadata
* data: folder containing time-series data used by various actors in the co-simulation

* dsoStub.py: Minimal representation of the distribution system providing identical interface as other TESP ex-
amples but requires dramatically reduced computation load as compared to full modeling traditionally done in
GridLAB-D.

* runstub.sh: prepares co-simulation ‘“‘dstostub_case’ directory with
— case_config.json: copy of the configuration data co-simulation
— [federates in the co-simulation].json: related message diction
— run.sh: run the co-simulation

— kill.sh: shuts down the co-simulation

3.1. TESP Capability Demonstrations 39

https://github.com/pnnl/tesp/blob/main/LICENSE
https://doi.org/10.1109/PESGM46819.2021.9638030

TESP Documentation, Release 1.0

— clean.sh: clean the metric outputs a for another run
— docker-run.sh: example script to run a docker
— monitor.sh: example script to monitor a run and then start postprocessor

— postprocess.sh: example script to make and move a case directory

3.1.8 IEEE 8500

These example files are based on the IEEE 8500-node Feeder model, as adapted for the SGIP-3 use case and the NIST
TE Challenge 2. This is a larger example and takes longer to run. More information is available at https://pages.nist.
gov/TEChallenge/library/ and panel presentations from IEEE ISGT 2018. The backbone feeder model is documented
at https://ieeexplore.ieee.org/document/5484381/

Running the base case

1. A current build of GridLAB-D from branch feature/1048 (or newer feature/1173) is required.

2. “runlEEE_8500.sh” run the base case. This example simulates one day but can take tens of minutes.
In order to plot results from the JSON files, Python 3 and the matplotlib package can be used:

1. “/runGLMDiction.sh” will create circuit metadata for plotting.

2. “plots IEEE_8500” will plot various metrics when the simulation finishes.

Alternatively, you can insert “recorders” into IEEE_8500.glm, which will create CSV files for plotting and post-
processing. The simulation takes longer with CSV file output.

Notes on building or modifying the base case:
1. Weather CSV files were made from the adjust*.m files to create sunny and cloudy days from TMY data.

2. Feeder generator MATLAB scripts add houses, water heaters, air conditioners, solar panels and batteries to the
8500-node feeder base model in the backbone subdirectory. One produces IEEE_8500.glm for the base case, used
by all teams. The other, found under PNNLteam subdirectory, produces inv8500.glm for PNNL simulations of
smart inverters.

3. The house*.csv files contain equivalent thermal parameter (ETP) model parameters exported from GridLAB-D.
These may be helpful if simulating houses on your own. See http://gridlab-d.shoutwiki.com/wiki/Residential
module_user%?27s_guide for information about GridLAB-D’s house model, including equivalent thermal pa-
rameters (ETP).

Base File Directory
* adjust_solar_direct.m: MATLAB helper function that ramps the direct solar insulation during a postulated cloud
transient
* adjust_temperature.m: MATLAB helper function that ramps the temperature during a postulated cloud transient
* backbone: the IEEE 8500-node model as defined by the original authors for OpenDSS

e CAISO_DAM_and_RTP_SG_LNODEI13A_20170706-07_data.xlsx: optional day-ahead market and real-time lo-
cational marginal price (LMP) data

* clean.bat: Windows batch file that removes output and temporary files

* clean.sh: Linux/Mac script that removes output and temporary files

40 Chapter 3. TESP Demonstrations and Examples

https://pages.nist.gov/TEChallenge/library/
https://pages.nist.gov/TEChallenge/library/
https://ieeexplore.ieee.org/document/5484381/
http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide
http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide

TESP Documentation, Release 1.0

e climate.csv: hourly temperature, humidity, solar_direct, solar_diffuse, pressure, wind_speed read by
IEEE_8500.glm: copy either sunny.csv or cloudy.csv to this file, depending on which case you wish to run

* Cloudy_Day.png: screen shot of process_gld.py plots for the cloudy day

* Cloudy_Voltages.png: screen shot of process_voltages.py plots for the cloudy day

* cloudy.csv: copy to climate.csv to simulate a day with afternoon cloud transient

* Cloudy.fig: MATLAB plot of the correlated cloudy day temperature and solar irradiance

* estimate_ac_size.m: MATLAB helper function that estimates the house HVAC load as determined by GridLAB-
D’s autosizing feature. These values are embedded as comments in JEEE_8500.glm, which may be useful if
modeling the HVAC load as a ZIP load.

 gld_strict_name.m: MATLAB helper function to ensure GridLAB-D names don’t start with a number, as they
can with OpenDSS files under backbone, but is not allowed in GridLAB-D

* house_ca.csv: house ETP parameters from the base case: may be useful for your own house models.

* house_cm.csv: house ETP parameters from the base case: may be useful for your own house models.

* house_ua.csv: house ETP parameters from the base case: may be useful for your own house models.

* house_um.csv: house ETP parameters from the base case: may be useful for your own house models.

e [EEE_8500.glm: base case feeder, populated with houses, PV and batteries.

* I[EEE_8500gener_whouses.m: MATLAB script that produces IEEE_8500.glm from files under backbone

* main_regulator.csv: total feeder current in the base case: may be useful in benchmarking your own power flow
solver.

e PNNLteam: subdirectory with PNNL’s participation files: see next section.
* README.md: this file
* schedules.glm: cooling, heating, lighting and other end-use appliance schedules referenced by IEEE_8500.glm

e substation_load.csv: total feeder load and positive sequence voltage in the base case: may be useful in bench-
marking your own power flow solver.

* Sunny_Day.png: screen shot of process_gld.py plots for the sunny day

* Sunny_Voltages.png: screen shot of process_voltages.py plots for the sunny day

* sunny.csv: copy to climate.csv to simulate a clear, sunny day

* sunny.fig: MATLAB plot of the correlated sunny day temperature and solar irradiance

* TE_Challenge_Metrics.docx: documentation of the use case metrics of interest to the entire NIST TE Challenge
2 team

PNNL Team Files

The subdirectory PNNLteam contains files used only for the pre-cooling thermostat and smart inverter simulations, as
presented by PNNL at IEEE ISGT 2018. See the report on NIST TE Challenge 2 for more details. To run these simu-
lations, you will need to install TESP, which includes FNCS and the fesp_support Python package. These simulations
require a recent build of GridLAB-D from the feature/1173 branch (newer than the version posted for the base case),
which is included with TESP. Also, newer versions of TESP run on Linux only. For Windows or Mac OS X, you will
have to run TESP in a virtual machine or Docker container.

inv30.glm is a small 30-house test case with smart inverters, and inv8500.glm is the larger feeder model with smart
inverters.

3.1. TESP Capability Demonstrations 41

TESP Documentation, Release 1.0

invti30.glm is the 30-house test case with smart inverters, and the house thermal_integrity_level attribute specified
instead of the individual R values and airchange_per_hour values. The log file precoolti30.log will contain the house
equivalent thermal parameter (ETP) model as estimate from the thermal integrity level.

All three run over FNCS with the precooling agent in tesp_support.precool. Since ISGT 2018, some changes have been
made to the precooling agent:

* Only 25 houses are allowed to change setpoint at each time step: others wait until a subsequent step
* The precooling temperature offset is randomized from 1.9 to 2.1 degrees
These simulations take up to 1 hour to run. Example steps are:

a. “python3 prepare_cases.py”

b. “./run8500.sh”

c. “python3 plots.py inv8500 after the simulation completes

d. “python3 bill.py inv8500”

e. “python3 plot_invs.py inv8500”

There are three GridLAB-D definitions near the top of inv30.glm, invti30.glm and inv8500.glm. These determine the
solar inverter control modes, and (only) one of them should be enabled. The script files do this on the command line
to GridLAB-D, e.g., -D INV_MODE=VOLT_VAR. Inside the GLM files, one and only one of the following lines must
be left uncommented:

¢ #define INVERTER_MODE=${INV_MODE}

* /f#define INVERTER_MODE=CONSTANT_PF
* /f#define INVERTER_MODE=VOLT_VAR

* /f#define INVERTER_MODE=VOLT_WATT

InvFeederGen.m was adapted from IEEE_8500gener_whouses.m in the parent directory, to populate inv8500.glm in a
similar way, but with smart inverter functions added. See the TESP documentation for guidance on interpreting the
other files in this directory.

* bill.py: calculates and plots a summary of meter bills

e clean.sh: script to clean out log files and output files

* inv30.glm: a 30-house test case with smart inverters

e inv8500.glm: the 8500-node test case with smart inverters

* invti30.glm: a 30-house test case with smart inverters and simplified house thermal integrity inputs

* invFeederGen.m: a MATLAB helper script that populates 8500-node with smart inverters, based on the ../back-
bone directory

* kill5570.sh: helper script that stops processes listening on port 5570

* parser.py: testing script for parsing FNCS values

e plot_invs.py: tabulates and plots the meter with most overvoltage counts

* plots.py: plots the GridLAB-D and agent outputs using tesp_support functions

* prepare_cases.py: prepares the JSON dictionaries and FNCS configuration for both cases, using tesp_support
functions

e prices.player: time-of-day rates to publish over FNCS

e run30.sh: script that runs the 30-house case, inverters in constant power factor mode

42 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

* runti30.sh: script that runs the 30-house case with simplified thermal integrity input, and volt-var mode inverters

e run8500.sh: script that runs the 8500-node case with no price, voltage or smart inverter response

* run8500base.sh: script that runs the 8500-node case, responsive to time-of-use rates and overvoltages

* run8500tou.sh: script that runs the 8500-node case, price response to time-of-use rates, no smart inverters

e run8500volt.sh: script that runs the 8500-node case, precooling response to overvoltage, no smart inverters

e run8500vvar.sh: script that runs the 8500-node case, non-transactive, smart inverter volt-var mode

* run8500vwatt.sh: script that runs the 8500-node case, non-transactive, smart inverter volt-watt mode
Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

3.1.9 House Example

This example populates houses, solar and storage onto an existing GridLAB-D feeder, using the write_node_houses
and write_node_house_config functions from fesp_support. It does not run a transactive system.

To run the example:

./run.sh
#Use *ps* to learn when GridLAB-D finishes. It should take a couple of minutes.
python3 plots.py

File Directory
e clean.sh: script that removes output and temporary files
e gld_plots.png: results for the feeder, house load exceeds substation load because of solar generation
* hvac_plots.png: results for the house air conditioning systems
» meter_plots.png: results for the billing meters
* plots.py: makes 3 pages of plots
* README.rst: this file
* run.sh: script that writes houses, creates a dictionary and runs GridLAB-D
e test_houses.glm: GridLAB-D file that includes houses.glm and runs for two days
» WriteHouses.py: writes houses on 14 primary nodes to houses.glm
Results

The example feeder has 14 primary nodes, populated as follows. 80% of the houses have air conditioning. Except
where indicated, all are in region 2. All use a fixed seed for randomization and use a metrics collection interval of 300.
See WriteHouses.py for details on how to set up the populations, and function documentation for other options.

3.1. TESP Capability Demonstrations 43

https://github.com/pnnl/tesp/blob/main/LICENSE

TESP Documentation, Release 1.0

Table 3.1: Model description
Node Phasing kVA Drop[fff Region Houses Other

F/B1 ABC 1000 O 2 42
F7/B2 AS 500 O 2 42
F7/B3 BS 500 O 2 42
F7B4 CS 500 O 2 42
F7/B5 AS 500 75 2 42 triplex drop
F7B6 BS 500 75 2 42 triplex drop
F7/B7 CS 500 75 2 42 solar and storage, triplex drop
F7/BS ABC 1000 O 2 40 uses loadkw and house_avg_kw
FIB1 ABC 1000 O 1 42
F1B2 ABC 1000 O 3 42
F1B3 ABC 1000 O 4 42
F1B4 ABC 1000 O 5 42
F1B5S ABC 1000 75 2 42 quadriplex service drop
F1B6 ABC 1000 0O 2 42 solar and storage
Plotted results from this example.

— Total 1001 — wmax
— Losses — Min

— Range A Hi

% 100

Voltage over 14 Meters House Air at F1B1_hse_1 Total Meter Bill No Regulators Voltage Violation Durations
10

— Range AHi
5000 Range B Hi
004 — Range ALo
08 — Range 8 Lo
5000 — o Voltage

— Mean
— Min
— Max
01 — setc
set

Fig. 3.4: Results collected from GridLAB-D measurements

Copyright (c) 2017-2023 Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

44 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/blob/main/LICENSE

TESP Documentation, Release 1.0

HVAC at 586 Houses

Degrees
[2:2]
o
i

kW

0 10 20 30 40 50
Hours

Fig. 3.5: Operation of all HVACs in GridLAB-D

3.1. TESP Capability Demonstrations 45

TESP Documentation, Release 1.0

Min Voltage [%]

Max Voltage [%]

Voltage at 14 Meters

100.00 ~
99.75
99.50
99.25 ~
99.00 ~
98.75

100.00 ~

99.75 ~

99.50 ~

99.25

99.00

Fig. 3.6: Meter measurements of all houses in GridLAB-D

46

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

3.1.10 GridLAB-D Player and Recorder Demonstration

This example demonstrates how to use GridLAB-D’s player and recorder functions. GridLAB-D’s player functional-
ity allows external data to be played into a simulation and define the value of any of the parameter in most objects.
Recorders do the converse and record the value of any object’s parameter and writes it out to file. Further details can
be found in GridLAB-D’s documentation on players and recorders.

Directories TE30 and ieee8500 provides more in-depth examples.
To run the example:

1. ./run.sh

File Directory

README.rst: this file

* run.sh: script that writes houses, creates a dictionary and runs GridLAB-D

SG_LNODEI3A.player: player file that has Imps values for a node for testing
* testImp.glm: GridLAB-D file that an SG_LNODEI3A .player that uses the object player

Results

The file Imp_value.csv is created and can be compared with SG_LNODE13A .player which was used for input.

3.1.11 GridLAB-D Model Modification

For many transactive energy analysis, detailed modeling of the distribution system is an important part of the analysis
and GridLAB-D is often chosen as the modeling tool. It is not unusual, though, for a given GridLAB-D model to be
non-ideal for the particular analysis scenario to be modeled and need modification in some way: adding rooftop solar,
replacing the existing heat pumps with higher efficiency models, changing voltage regulator settings, etc. To aid in
this, TESP includes a GridLAB-D modification API to provides a class- and object-oriented way of manipulating the
model that we hope provides a (relatively) painless process for editing GridLAB-D models.

GLMModifier Philosophy

There have been several other scripts previously developed that provide GridLAB-D model modification. Most of
these are text-line-based where the model is read in line-by-line and at appropriate points lines are editing before being
printed out to file or additional lines are inserted before moving through the model (for example, adding rooftop solar).
Though these have been used for over a decade they always presented a challenge in that model modifications could
not be made holistically as the entire model was not parsed but rather remained as text that could be manipulated.

TESP’s GLMModifier overcomes these shortcomings by providing an internal data structure that the model can be
read and parsed into. By doing so, the modeler has the ability to evaluate the entire model, manipulate the necessary
portions, and then write out the entire model to file. For example, after GLMModifier reads in the model parses it into
its data structure, it is possible to count the number of houses that use gas heating, convert them to use heat pumps, and
upgrade any necessary transformers and power lines to handle the increased load.

There are two primary ways to access the model using GLMModifier:

* Object- or class-based - GLMModifier’s data structure allows for evaluation and modification of GridLAB-D ob-
jects based on their class. For example, all GridLAB-D “house” objects are easily accessible and their parameters
editable.

3.1. TESP Capability Demonstrations 47

http://gridlab-d.shoutwiki.com/wiki/Player
http://gridlab-d.shoutwiki.com/wiki/Recorder

TESP Documentation, Release 1.0

* Graph-based - GLMModifier uses the networkx library to create a graph of the electrical network. Using this
library its possible to evaluate the GridLAB-D model in terms of electrical connectivity and modify in more
specific ways. For example networkx allows the modeler to identify which components lie between a newly
added load and the substation so their capacity can be evaluated and potentially increased.

GLMModifier APl Example Walk-Through

The following is a walk-through of an example use of the GLMModifier API (“gld_modifier.py”) in the TESP “exam-
ples/capabilities” folder.

GLMModifier is Python-based so the first step (after installing TESP) is importing the appropriate libraries.:

from tesp_support.api.modifier import GLMModifier
from tesp_support.api.data import feeders_path

Then create a GLMModifier object to do the manipulation:

[glmMod — GLMModifier()

With the modifier, we can read the GridLAB-D model into the GLMModifier data structure for manipulation:

[glml"lod.model .read('path/to/model.glm")

]

GridLAB-D split their functionality into various modules and for this example, we’re going to be adding houses to the
model which means we need to make sure the “residential” module gets added to the model file.:

[glmMod.add_module('residential', [

)

The GLMModifier has an attribute that holds the entire GridLAB-D model, “glm”. Purely to make our live a few
characters easier when using the GLMModifier, we can assign this to another variable of our choice and strip out the
need constantly pre-pend many of our commands with “GLMModifier”.:

[glm = GLMMod.glm

)

GLMModifier makes it easy to get the names of all of the objects of a given class and in this case, to add houses, we
need to look for GridLAB-D’s “triplex_meters” to attach the houses to.:

tp_meter_objs = glm.triplex_meter
tp_meter_names = list(tp_meter_objs.keys())

tp_meter_objs is a Python dictionary with the keys being the object names and the value being an Python dictionary
of the object parameters and values. To make a list of the names of the meters, we just need to ask for the keys of the
dictionary as a list.

Adding Objects

tp_meter_names is a list of the names of the GridLAB-D triplex_meter objects as strings. Using those names we
can build up a Python dictionary that defines the parameters of another triplex_meter object we’re going to add to
the model. The dictionary is called “meter_params” and has three members all defined by the data from an existing
specific triplex_meter in the model.:

new_name = tp_meter_names[house_num]
billing_meter_name = f"{new_name/_billing"

(continues on next page)

48 Chapter 3. TESP Demonstrations and Examples

https://networkx.org/

TESP Documentation, Release 1.0

(continued from previous page)

meter_params = {
"parent": new_name,
"phases": glm.triplex_meter[f"/new_name/"]["phases"],
"nominal_voltage": glm.triplex_meter[f" {new_name}"]["nominal_voltage"],

}

The phases and nominal_voltage are easily defined using GLMModifier as they are just members of a dictionary
that defines a specific triplex meter.

Once the Python dictionary with the GridLAB-D object parameters are defined, it can simply be added to the model.:

[glml”lod.add_object(‘triplex_meter', billing_meter_name, meter_params) J

.add_objects() has three parameters: the type of object, the name of the object (which the API uses to define the
name parameter of the object behind the scenes), and the dictionary with the object parameters.

Adding and Modifying Existing Object Parameter Values

Further down in the example, there’s a portion of code showing of how to modify an existing object. In this case, we
use the fact that .add_object () method returns the the GridLAB-D object (effectively a Python dictionary) once it
is added to the model. Once you have the GridLAB-D object, its easy to modify any of its properties such as:

[house_obj['floor_area'] = 2469 J

This exact syntax is also valid for adding a parameter that is undefined to an existing GridLAB-D object.

Deleting Existing Object Parameter Values

To delete a GridLAB-D object parameter value, you can just set to to None:

[house_to_edit["Rroof"] = None]

Note that GridLAB-D requires some parameters to be defined to run its simulations. Removing the parameter will
remove it from the GridLAB-D model file that gets created (.glm) but may effectively force GridLAB-D to use its
internal default value. That is, clearing the parameter value in this way is not the same as setting it to an undefined
value.

Deleting Existing Objects

Its possible to delete an object and all its parameter values from the GridLAB-D model:

[glmMod .del_object('house', house_to_delete)]

To prevent problems with electrical continuity of the models, by default this method will delete children objects.

3.1. TESP Capability Demonstrations 49

TESP Documentation, Release 1.0

networkx APIs

networkx library is a general graph Python library and it utilized by TESP to store the topology of the electrical network
in GridLAB-D. The core GLMModifier APIs are oriented around the GridLAB-D classes and their objects in the model
and from these the topology of the electrical circuit can be derived but not easily or quickly. To make topology-based
modifications easier, we’ve done the hard work of parsing the model and building the networkx graph. With this graph,
modelers can more easily and comprehensively explore and edit the model.

First, if any edits have been made to the GridLAB-D model since importing it, the networkx object needs to be updated
prior to include those changes. Conveniently, this also returns the networkx graph object:

[graph = glmMod.model.draw_network() J

As you can see, the networkx graph is a property of the GLMModifier.model object and the above line of code simply
makes a more succinct reference to it.

After that, you can use networks APIs to explore the model. For example, starting at a particular node, traverse the
graph in a breadth-first manner:

[for edge in nx.bfs_edges(graph, "starting bus name"):]

For each edge you, the modeler, can look at the properties of each edge (GridLAB-D link objects) to see if it is of
particular interest and modify it in a specific way.

Plotting Model

GLMModifier includes the capability of creating a visual representation of the network for manual inspection. This
allows the user to evaluate the model and make sure the changes made are as expected and has the topology expected.
To create the plot of the graph of the model a simple API is used:

[glml"lod.model.plot_model() J

Under the hood, this API makes an update to the networkx graph and then automatically lays it out and plots it on
screen, as shown below.

Mousing over the nodes of the system shows some of the metadata associated with them; in the example image shown
above one of the houses is selected. As of this writing, this metadata is not available for the links/edges in the graph
but we’re anticipating adding that data soon. The layout chosen is algorithmic and does not respect coordinates that
may be present in the imported .glm. For larger networks, it can take tens (or many tens) of seconds for the layout
to complete; creating the graph is a blocking call in the script and the rest of the script will not run until the plotting
window is closed.

Writing Out Final Model

Once all the edits to the model have been made, the model can be written out to file as a .glm and run in GridLAB-D.:

[glml”lod.write_model("output file path including file name.glm") J

50 Chapter 3. TESP Demonstrations and Examples

https://networkx.org/

TESP Documentation, Release 1.0

g

B M-t
Shirem §
L= = ﬁéﬁ";—o—f [atas o
— e abad ey

o i

substation
node

load

meter
triplex_node
triplex_meter
® house

node: R1_12 47 1 tn 606
class: triplex_node
parent: R1_12_47_1_tm_8
phases: BS
nominal_voltage: 120.0

F ﬂ:‘ power_12: 3052.7072+1191.7402]
’ = voltage_1: -60.00-103.92j
voltage_2: -60.00-103.92]

p - - .
P ST SN "“:(-_:_‘:“- . Sk 7 S

=&,
L -2
L

switch

m fuse

m recloser
regulator
transformer
overhead_line
® underground_line
triplex_line
parent

3.1. TESP Capability Demonstrations

51

TESP Documentation, Release 1.0

GLMModifier House Object Population

Previous GridLAB-D model modification tools also included methods by which to choose the parameters for some
objects (the house object in particular). The re-implementation of these features using updated data and methodologies
are currently being implemented in what we are calling a “reference implementation” to show others one possible way
of defining values for all these parameters. We want to not only provide an empirically-based method but also clearly
document it so that other users can better understand what we did and customize or modify it to better suit their needs.

Future work

We’ve put in a lot of work to support all of GridLAB-D syntax but are not quite there yet. In particular, the last remaining
element we haven’t been able to capture well in our data structure are the #ifdef C-like conditionals GridLAB-D
supports. This feature is under active development.

Currently, when GLMModifier writes out the model it does so in a manner that groups all the classes together. Alter-
native methods of writing out this non-linear data structure need to be evaluated so that human-readers of the file have
an easier time (at least in some cases). This is on our to-do list.

3.1.12 Datastore Demonstration

Introduction

The TESP data store provides a way to collect simulation data (input and output data sets) for use outside the compute
space in which it was created. For example, a particular transactive study may require above-average computational
resources and thus is run on a dedicated server. Once the simulation is complete, the TESP datastore capability can be
used to collect the relavant results and then handed off to an analyst to perform the post-processing. Using the datastore
allows the relevant files to be extracted from the place they were created in the file system and distributed to the end
user in consistent file structure. This allows the paths to the relevant files to be fixed and allow post-processing to be
developed and run by any user that is given the data store.

The remainder of this page will describe who to use the datastore capability in TESP, both for getting data into the store
and pulling it out to use. We’ll be using data produced by the TE30 example as it can be run relatively quickly but has
a diverse set of data that can be used.

Storing Data

The TESP datastore has two parts:
e A ZIP file with all raw data collected
¢ A metadata JSON that shows the contents of each file

The construction of these two files for the store are done independently but are obviously related. Though there are
exceptions, it is likely that most of the time you will want to both add a file to the ZIP as well as add metadata about that
file to the JSON. Most users of the datastore you make will want access to both the data itself as well as the metadata
so they can better understand the data and how best to use it.

52 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/issues/104
https://github.com/pnnl/tesp/issues/105

TESP Documentation, Release 1.0

Adding Files to the ZIP

The TESP datastore API provides two general strategies for adding files to the ZIP:

* Add a directory to the store and recurse down through the file hierarchy adding all files and sub-directories to
the ZIP

¢ Add individual files

Both approaches allow some degree of locating files in the ZIP file/folder hierarchy differently than in the file/folder
hierarchy from which they come. When adding individual files this freedom is absolute; the source path for the data
and the destination path are independently defined. When adding an entire folder (and its contents) only the new root
location for this folder can be defined; the file/folder hierarchy beneath this is preserved.

Adding Metadata to JSON

The TESP datastore API can only store data that is tabular in nature (as of this writing). Generally the simulators/tools
that produce data in TESP are able to satisfy this requirement and given the time-series nature of transactive system
analysis supported by TESP, it is likely that any custom tools or code could be made to produce similar tabular data.

The TESP datastore API is able to automatically find the tables in the data file. The “table” concept is native to the
HDF5 and SQL-style database files. For comma-separated-value (CSV) files, it is assumed all the data present is in
one table (with perhaps some header lines). Once the tables are found, the API allows the person adding files to the
metadata to define the location in the data of the timestamp data and the labels for the columns. This data is added
to the metadata JSON to allow the user of the datastore to inspect the metadata as a guide or aid in performing the
post-processing

Quick Example

The TESP installation includes a full working example with data from the TE30 example (discussed more below) but
here’s a quick and dirty overview of the APIs in action:

import tesp_support.api.store as store

store = store.Store("*file name of store*") # Create store
os_data_path = store.add_path("*0S path to data*", "*name of path for metadata*")
zip_dir_path = os_data_path.set_includeDir("*ZIP path to data*", *recurse?[bool]*)

Adding file to metadata JSON

data_file = store.add_file("*0S file path + name relative to current working dir*",
"*name in store*",
"*description string for data*")

table_list = data_file.get_tables()

Just doing the first table to keep it simple

data_file.get_columns(table_list[0])

data_file.set_date_bycol(table_list[0], "*column name with timestamp information*")

Adding files to ZIP in previously created directory in ZIP
store.set_includeFile(zip_dir_path, "*0S path to file to include*")

3.1. TESP Capability Demonstrations 53

TESP Documentation, Release 1.0

Retrieving and Using Data

The datastore is intended to allow portability of data to allow post-processing scripts the ability to work from data in a
known location (that is, relative to the datastore), inspecting the schema of the stored data, and providing data import
and conversion into pandas DataFrames for ease of processing.

Quick Example

The essential APIs for using the data store are pretty simple.::
import tesp_support.api.store as store store = store.Store(sfore name) schema = store.get_schema(data filename)
tables = schema.tables columns = schema.columns df = schema.get_series_data(table name, start time, stop time)

Example - TE30

The example provided with TESP uses the TE30 example as it runs fairly quickly (minutes instead of hours) and
produces a diversity of data.

The use of the datastore is always split into two parts: creating the datastore from results files and using the datastore to
analyze results. In this example, to save time, we’ve run the TE30 simulation for you and created the datastore already.
After running the simulation (when the results files were created, filled with data, and finalized), the “makestore.py”
script in the TE30 example folder was run and it created two files: “te30_store.json” and “te30_store.zip”. These
files can then be moved around and then a post-processing script, like “te30_ustestore.py” can be used to access and
manipulate the data.

makestore.py

To emulate the case where the TE30 example is run on a different computer than the post-processing takes place,
“makestore.py” resides in the “examples/capabilities/te30” folder and should be run after the TE30 case has been run
and the output data is produced.

First, we create the datastore and add a directory to the metadata and .zip.:

my_store = fle.Store(case_name)

my_path = my_store.add_path("../te30", "TE30 Directory")
sub = my_path.set_includeDir(".", False)

The data being ingested by the store is from GridLAB-D and is in HDFS5 format. Due to the way the data collection
in GridLAB-D using HDFS5 in the TE30 example is implemented, a number of results files are created with many of
them being effectively empty. This is due to the fact that none of those object exist in the GridLAB-D model but results
files are generated by GridLAB-D regardless of which types of objects exist in the GridLAB-D model. In this example
we’re just looking at the data collected from the billing meters, houses, inverters.

For each of the GridLAB-D data files being added, add it to the metadata JSON and to the ZIP. Again, particular to the
way GridLAB-D records its data using HDFS, for each simulated day GridLAB-D generates a new table in the HDFS5
file. Thus, the files is added to the ZIP only once but the metadata for each day is added to the JSON separately.:

my_file = my_store.add_file(name, name[i], names[i] + ' for + challenge)
my_path.set_includeFile(sub, name)
tables = my_file.get_tables()
if len(tables) > 1:
columns = my_file.get_columns(tables[1])

(continues on next page)

54 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

(continued from previous page)
my_file.set_date_bycol(tables[1], 'date')
columns = my_file.get_columns(tables[2])
my_file.set_date_bycol(tables[2], 'date')

As mentioned previously, the TESP datastore API assumes all data in a CSV is effectively a single table and thus is
added singly. The second parameter in the .get_columns() method is optional but is particularly useful for CSVs that
have header lines at the top of the file (such as these used in this example). The second parameter is the number of
header lines to skip before getting to the row that defines the names of the columns.:

my_file = my_store.add_file(challenge + ".csv'", challenge, 'CSV for TE_ChallengeH')
tables = my_file.get_tables()
if len(tables):
columns = my_file.get_columns(tables[0], 0)
my_file.set_date_bycol(tables[0], 't[s]")
my_path.set_includeFile(sub, challenge + ".csv")

For completeness sake, a number of JSONs with simulation metadata are included in the ZIP but NOT cataloged in the
metadata JSON. Including this simulation metadata will be useful for those post-processing the results but as it is not
time-series, it is not cataloged in the datastore metadata JSON.:

names = ['agent_dict', '_glm dict', 'model_dict']
for i in range(len(names)):
my_path.set_includeFile(sub, challenge + names[i] + ".json'")

te30_usestore.py

To run the “te30_usestore.py” example, first copy “te30_store.zip” to the “te30_store” folder. This is emulating some-
body handing over data they produced by running TESP on another machine for you to post-process. Open up the .zip,
allowing it to expand and giving you access to the datafile the user of “makestore.py” zipped up.

Once setting up the post-processing to define the time-range we’re going to analyze and potentially change the working
directory to that of the folder containing the unzipped files, we first create a datastore object.:

[teS@_store = store.Store(case_name)]

If you don’t have a good sense of the data being passed to you in the .zip, you can get a list of the schemas in the
datastore.:

for item in te30_store.get_schema():
print(£"\t{item}")

Note that this is not necessarily a list of the files themselves. This is a list of the datafiles that have a defined schema
in the datastore metadata. There could be other files that have not had schemas created but have been distributed in the
Zip.

To look at the specific data in a schema, we can make a call to get the schema and then look at the tables in a schema
and the columns associated with each table.:

weather_schema = te30_store.get_schema("weather™)
If you're not evaluating the schema interactively you can print it to console
print (f"Weather tables {pp.pformat(weather_schema.tables) ")
print(f"Weather columns {pp.pformat(weather_schema.columns) }")
(continues on next page)

3.1. TESP Capability Demonstrations 55

TESP Documentation, Release 1.0

(continued from previous page)

inverter_schema = te30_store.get_schema("inverter_ TE_ChallengeH metrics™)

Then we pull the data out.:

weather_data = weather_schema.get_series_data("weather", start_date_l, end_date_1)

inverter_data = inverter_schema.get_series_data("indexl1", start_date_1, end_date_1)

TESP uses pandas DataFrames as the standard format for time-series data, regardless of the source data format (e.g.
.csv, .h5); the conversion is handled by the TESP APIs. In this case, the weather data was from a .csv and the inverter
data was from an HDF5 file generated by GridLAB-D. When properly indexed so the timestamps for the data are
recognized as such, pandas takes care of aligning the data in time so actions like plotting are much easier.:

weather_data = weather_data.set_index("timestamp")
inverter_data = inverter_data.set_index("date")

Unfortunately, the GridLAB-D data contains all inverter data in the same table and since we’re going to look at the
output of a single inverter, we have to filter the table to only show us the data for that inverter.:

houseAll_inv = inverter_data.loc[(inverter_data["name"] == b"inv_F1_house_A11")]
inverter_time = houseAll_inv["date"]
If the date is typed as a string instead of a datetime object, we need to
convert it to a datetime object to allow for indexing.
if isinstance(inverter_time.iloc[0], str):
inverter_time = inverter_time.str[:-4]
inverter_time = pd.to_datetime(inverter_time, format="%Y-%m- %H : %M :%S")
Making a new DataFrame for convenience
inverter_data = pd.concat([inverter_time.T, houseAll_inv["real_power_avg"]], axis=1)

For this example, we’re going to be confirming that the simulation shows a strong correlation between the solar flux (as
recorded in the weather data) and the rooftop solar production power (as recorded by GridLAB-D). If all the models
and the co-simulation are working right (and they better be because we’re using it as an example for TESP), then we
would expect good agreement between the two time-series datasets.

Once we’ve got the data from the two sources as DataFrames, the rest is just using pandas and Matplotlib to make our
graph and visually evaluate the data as shown in Fig. 3.7.

As expected, a strong correlation does exist and all is well.
Copyright (c) 2023, Battelle Memorial Institute
License: https://github.com/pnnl/tesp/blob/main/LICENSE

TESP uses TCP/IP port 5570 for communication and requires Python 3. Simulations can start many processes, and
take minutes or hours to complete. At this time, instructions are given only for the Linux package or Docker version of
TESP, which is installable. See below for advice on running TESP in native Mac OS X or Windows.

Some general tips for Linux:
* invoke python3 instead of just python
* we recommend 16 GB of memory
* high-performance computing (HPC) should be considered if simulating more than one substation-week

* you may have to increase the number of processes and open file handles allowed

Isof -i :5570 will show all processes connected to port 5570

56 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/blob/main/LICENSE

TESP Documentation, Release 1.0

— Inverter Power ~
Solar Flux \
- 80
4000 1

60
3000 - =
&
= S
= =
o =
3 - 40 2
£ 2000 —
1]
=]
L

1000 - 20

04 / e)
T T T T T T T T T
) 5 o) NG)) 5 Q
" " o " " o " o 4
Q Q Q Q s} s} Q Q Q
S 3 3 3 3 & 3 & I

Fig. 3.7: Comparison of solar flux and rooftop solar inverter output from TE30 example.

3.1.

TESP Capability Demonstrations 57

TESP Documentation, Release 1.0

* use Is -al or cat or tail on log files or csv filesto show progress of a case solution

« /Kill5570.sh will terminate all processes connected to port 5570; if you have to do this, make sure Isof -i :5570
shows nothing before attempting another case

¢ it is recommended that you append & to any python plot commands, so they run in the background.

3.2 TESP Example Analysis

3.2.1 SGIP1 Analysis Example

Problem Description and Analysis Goals

The Smart Grid Interoperability Panel (SGIP), as a part of its work, defined a number of scenarios for use in under-
standing ways in which transactive energy can be applicable. The first of these (hereafter referred to as “SGIP1”) is a
classic use case for transactive energy [2]:

The weather has been hot for an extended period, and it has now reached an afternoon extreme temperature
peak. Electricity, bulk-generation resources have all been tapped and first-tier DER resources have already
been called. The grid operator still has back-up DER resources, including curtailing large customers on
interruptible contracts. The goal is to use TE designs to incentivize more DER to participate in lowering
the demand on the grid.

To flesh out this example the following additions and/or assumptions were made:
» The scenario will take place in Tucson Arizona where hot weather events that stress the grid are common.

* The scenario will span two days with similar weather but the second day will include a bulk power system
generator outage that will drive real-time prices high enough to incentivize participation by transactively enabled
DERs.

* Only HVACs will be used to respond to transactive signals

* Roughly 50% of the HVACs on one particular feeder will participate in the transactive system. All other feeders
will be modeled by a loadshape that is not price-responsive.

The goal of this analysis are as follows:
» Evaluate the effectiveness of using transactively enabled DERs for reducing peak load.
 Evaluate the value exchange for residential customers in terms of comfort lost and monetary compensation.

» Evaluate the impacts of increasing rooftop solar PV penetration and energy storage on the transactive system
performance.

* Demonstrate the capabilities of TESP to perform transactive system co-simulations.

The software version of this study implemented in TESP is similar to but not identical to earlier versions used to
produce results found in [22] and [13]. As such the specific values presented here may differ from those seen in the
aforementioned publications.

58 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Valuation Model

Use Case Diagram

A Use Case Diagram is helpful in providing a broad overview of the activities taking place in the system being modeled.
It shows the external actors and the specific use cases in which each participates as well as any sequencing between

specific use cases.

uc 5GIP 1 Use Case .~

Distribution Utiliw\

Transactive System

Conventional System

—

Iged Grid Capacity,
|p<k|.|eat Day (SGIP 1)

|m;holesale

Electricity

aprecedess

Supply Retail Electricity
Service

2

Generator

Modify Resource and

Demand using TES
oo

/Custcmer

Fig. 3.8: Definition of the use cases being modeled in the system under analysis.

3.2. TESP Example Analysis

59

TESP Documentation, Release 1.0

Value Flow Diagram

Value flows define the exchanges between actors in the system. For transactive systems, these value exchanges are
essential in defining and enabling the transactive system to operate effectively. These value exchanges are often used
when defining the key valuation metrics used to evaluate the performance of the system. The diagrams below show the
key value exchanges modeled in this system.

act Wholesale Electricity Service Value /

wactors #actors
Generator Distribution Utility
Generate and Sell Purchase
Electricity Wholesale Sales: Electricity whglesale anc!
—= Distribute Retail
Electricity

Wholesale Sales: Dollars

Fig. 3.9: Value exchanges modeled in the wholesale market

act Retail Electricity Service Value /

aactor» wactors
Distribution Utility Customer
Purchase Wholesale and Consume Electricity:
Distribute Retail Electricity Retail Sales: Electricity Electricity

A\

Electricity Payment: Dollars

Fig. 3.10: Value exchanges modeled in the retail market

Metrics Identification

To guide the development of the analysis, it is important that key metrics are identified in the value model. The diagram
below shows the specific metrics identified as sub-elements of the Accounting Table object. Though this diagram does
not define the means by which these metrics are calculated, it does define the need for such a defintion, leading to a
data requirement from the analysis process.

Value exchanges modeled during the transactive system operation

60 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act Modify Resource and Demand using TES/

Retail Sales:
Electricity

Wholesale
Purchases:
Electricity

Purchase Wholesale and Distribute
Retail Electricity

Generate and Sell Electricity Consume Electricity: Electricity

Transactive
HVAC

Retail Responsive
Equipment

Sales: Load:
Dollars Electricity

Wholesale Purchases:
Dollars

class Metrics.
Accounting Table
I —
| |
— I
[|
Average ASHRAE
discomfort hours Business Case
Transactive Trahsactive fepder Total wh HL
wholesale electricity whplesale electricity neration r e Transmission and
purchase quantity cost distribution losses
Average PV energy
transacted quantity
Average ES energy Average ES energy
Average PV energy transacted quantity revenue
revenue
Bulk power system
02 emissions Bulk power system Bulk power system
50x emissions. NOx emissions

Fig. 3.11: Identification of the specific metrics to be included in the Accounting Table.

3.2. TESP Example Analysis

TESP Documentation, Release 1.0

Transactive Mechanism Flowchart (Sequence Diagram)

sd ClearingSequence /

GridlLAB-D SubstationAgent PYPOWER Energy+ Agent Energy+

1
1
! FNCS{SubstationLoad)

-

PF()
FNCS(Bus

[f—vmtagm

FNCS(Temperature, Voltage, HYAC Power, HVAC
State)——

AgentBids()

Aggregate()

FNCS(AggregatedBid)

I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I}
QFF()
FNCS(LMP)
I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
)

v

i
-t
-
ClearMarket()
AdjustSetpoints()
FMNCS(Setpaint,
Price)
-
[,J‘

FMCS(ElectricalLoad)

FNCS(LMP)

FNCS(Setpoints)

AdjustSetpoints()

FNCS(ElectricalLoad)

[

A

FMNCS(DistributionLoad)

FF()

FNCS(BusValtage)

y

Fig. 3.12: Transactive mechanism sequence diagram showing the data exchange between participants

Key Performance Metrics Definitions

Some (but not all) of the key performance metrics used in this analysis are as follows. A list of the final metrics collected
can be found in tabular form in Appendix C of [22].

62 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Key Performance Variable Definitions:

Social Welfare:

U; = utility functions of the individual loads

C; = utility functions of the individual generators
piL = power consumption of the individual loads
p]G = power generation of the individual generators

N, = total number of loads
N¢g = total number of loads
N. = total number of customers

t = simulated time
tday = last simulated time for each day
Py, = real power as measured at the transactive feeder’s substation

LM Py, = price of energy at the transactive feeder’s substation

Electrical energy per day

tday

EEday = Z Psub
t=0

Electrical energy per day per customer:

EEcustday = EEday/Nc

Electrical energy fee per day:

tday

EFgay =) LMPyy,
t=0

3.2. TESP Example Analysis

63

TESP Documentation, Release 1.0

Electrical energy per day per customer:

EFcust~day = EFday/Nc

Accounting Table Metrics Definitions

From the value model, it is possible to define metrics that will reveal the value-based outcomes of the individual
participants in the transactive system. These metrics often have a financial dimension but not always. The following
equations were used to produce the metrics calculated for the Accounting Table. These equations use the following
definitions:

Accounting Table Variable Definitions:

At = time step
nobs = number of daily observations
Ngays = Number of days
Epurchase = Wholesale energy purchased at substation test feeder per day, [MWh/d]
Py = power consumed at test feeder substation, [W]
Pheneration = output power of individual generator, [MW]
aF = amp factor
E.ox = wholesale energy purchase cost per day, [$/d]
LM Pyyrehase = Wholesale purchase price, [$/kWh]
LM Py, = wholesale revenue price, [$/kWh]
Rgeneraion = Wholesale generation revenue per day, [$/d]
Egeneration = Wholesale energy generated per day, [MWh/d]
L = losses at substation, [W]
TnD = transmission and distribution losses, [of MWh generated]
Ppy = PV power (positive only), [kW]
Prs = ES power (positive and negative), [KW]
Y = retail clearing price, [$/kWh]
FEpy = average PV energy transacted, [kWh/d]
Rpy = average PV energy revenue, [$/d]
FEks
Rgs = average ES energy revenue, [$/d]

average ES energy transacted, [kWh/d]

g = number of generator types in system which emit GHG out of coal, combined cycle, and single cycle
R = 3 x g matrix of emission rates for CO2, SOy, and NOy by generator type for coal, combined cycle, and single cycle
G = g X (Nobs - Ndays) Matrix of MWh output by generator type for coal, combined cycle, and single cycle for each interval o
K = 1x3 matrix of emission conversion from 1b to MT (CO-) and kg (SO, NOy)
E = 3x1 matrix of total emissions by GHG type (CO-, SOy, NOy) over study period

64 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Wholesale electricity purchases for test feeder (MWh/d):

Mdays Tiobs

Epurchase =At- 1 % 106 ZZ Pﬂﬂb,l,]

=1 j=1

Wholesale electricity purchase cost for test feeder ($/day)

aF MNdays Nobg

Ecost =At- 3" § § Psub,i,j ' LMPpurchase,i,j
1x10 — =
=1 j=

Total wholesale generation revenue ($/day)

Thdays Mobs

Rgeneralion =At-1x 103 : Z Z Pgeneralion,%j : LMf)sell,iJ'

i=1j=1

Transmission and Distribution Losses (% of MWh generated):

Mdays Tobs

TnD = ZZ

i=1 j—1 subz,]

Average PV energy transacted (kWh/day):

Mdays Tobs

ZZPPVH

Average PV energy revenue ($/day):

Tldays Mobs

Z ZY,] PPV,z,j

=1 5=1

fﬁv—f

Nobs

3.2. TESP Example Analysis

65

TESP Documentation, Release 1.0

Average ES energy transacted (kWh/day):

Tldays Mobs
Egs = At Z ZPES,i,j

n,
obs i=1 j—1

Average ES energy net revenue:

At Tdays Mgbs

Z Z Y Pes,ij

i=1 j=1

Rgs =

Nobs

Emissions:

Table 3.2: Emissions Concentrations by Technology Type

COo2 SOX NOX
coal 2074.2013 1.009 0.6054
combined cycle 898.0036 0.00767 0.057525
single cycle 1331.1996 0.01137 0.085275

Table 3.3: Conversion from 1b to MT (CO2) and kg (SOx, NOx)
K

CO2 0.000453592
SOx 0.453592
NOx 0.453592

Total CO2, SOx, NOx emissions (MT/day, kg/day, kg/day):

Tdays Mobs

g
E:ZZZGi7j,k x Ry x K

i=1j=1k=1

Analysis Design Model

The analysis design model is a description of the planned analysis process showing how all the various analysis steps
lead towards the computation of the key performance metrics. The data requirements of the valuation and validation
metrics drive the definition of the various analysis steps that must take place in order to be able to calculate these

metrics.

The level of detail is in this model is somewhat subjective and up to those leading the analysis. There must be sufficient
detail to avoid the biggest surprises when planning the execution of the analysis but a highly detailed plan is likely to
be more effort than it is worth. The analysis design model supports varying levels of fidelity by allowing any individual

activity block to be defined in further detail through the definition of subactivities

66 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Top Level

The top level analysis diagram (shown in Fig. 3.13) is the least detailed model and shows the analysis process at the
coarsest level. On the left-hand side of the diagram is the source data (which includes assumptions) and is the only
analysis activity with no inputs. The analysis activity blocks in the middle of the diagram show the creation of various
outputs from previously created inputs with the terminal activities being the presentation of the final data in the form
of tables, graphs, and charts.

actTop Level /

Co-simulation: analysis

Accouting table: table

P s
Develop T+G model: analysis
‘Source data: source J

Ty Develop dist. model: analysis) \ oo .
A Sae

QW=
= = M om0 Analysis validation: presentation
= o e} Prepare co-simulation: analysis

[Develop commercial building model: | _ _--=
analysis I

Fig. 3.13: Top level view of the analysis design model

Source Data

The green source data block in the top level diagram (see Fig. 3.13) is defined in further detail in a sub-diagram shown
in Fig. 3.14. Many of these items are more than single values and are more complex data structures themselves.

Develop Transmission and Generation Model

The “Develop T+G model” activity block in the top level diagram (see Fig. 3.13) is defined in further detail in a sub-
diagram shown in Fig. 3.15. The diagram shows that both generation and transmission network information is used to
create a PYPOWER model.

Develop Distribution Model

The “Develop dist. model” activity block in the top level diagram (see Fig. 3.13) is defined in further detail in a sub-
diagram shown in Fig. 3.16. The distribution model uses assumptions and information from the Residential Energy
Consumer Survey (RECS) to define the properties of the modeled houses as well as the inclusion of rooftop solar PV
and the participation in the transactive system. These inputs are used to generate a GridLAB-D model.

3.2. TESP Example Analysis 67

TESP Documentation, Release 1.0

act Data sources /)

Thermostat schedule parameters: tuple

Baseline cooling COP: singleton

Over-sizing factor: tabular

Transmission voltage: singleton

substation transformer parameters: tuple

Distribution transformer oversizing factor: singleton

Fuse oversizing factor: singleton

Residential insulation parameters: tabular

Air conditioner penetration factor: singleton

Solar PV penetration factor: singleton

Battery penetration factor: singleton

Electric water heater penetration factor: singleton

Electric water heater participation factor: singleton

Location: singleton

Flat-rate price: singleton

Inverter undersizing factor: singleton

Solar PV efficiency: singleton

Solar PV rated insolation: singleton

Standard transformer ratings: tabular

Standard fuse ratings:

standard recloser ratings: singleton

Standard breaker ratings: singleton

standard average customer load: tabular

Appliance schedule file:
singleton

Setpoint and water schedule file:
singleton

Commercial schedule file: singleton

HVAC thermostat timing parameters: tabular

HVAC thermostat setpoint
parameters: tabular

HVAC transactive controller parameters: tuple

Thermal integrity factor: tabular

Floor area: tabular

Single story factor: tabular

Gas heating factor: tabular

Heat pump factor: tabular

Resistance heating factor: tabular

Air-conditioning factor: tabular

Thermostat setpoints: tabular

Pool pump factor: tabular

‘Water heater size factors; tabular

Simulation start time: singleton

Simulation stop time: singleton

Simulation timestep size:
singleton

Metrics timestep size:
singleton

broker address:
singleton

Emissions rates: tabular

Energy plus model
name: singleton

Distribution system
location: singleton

Market general parameters: tuple

1¥3 file: singleton

Weather forecast
parameters: tuple

Generator reactive power limits: tuple

Generator real power limits: tuple

Generator location: singleton

Generator status: singleton

Bus voltage limits: singleton

Branch impedance parameters: tuple

Branch steady-state rating: tuple

Branch status: singleton

Generator startup cost: singleton

Generator shutdown cost: singleton

Generator cost curve: tuple

Transactive bus location: singleton

Generator outage schedule: singleton

OPF type: singleton

BFtype: singleton

Fig. 3.14: Detailed view of the data sources necessary to the SGIP1 analysis.

68

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act Develop T+G model

Generator reactive power limits:

Generator location:
ingleton

Generator status:
singleton

Generator real power limits:

Bus voltage limits:
_ singleton

Simulation timestep size: singleton

Simulation timestep size: singleton

Metrics timestep size: singleton
Metrics timestep size: singleton

Develop T+G model: analysis

PYPOWER: analysis

PYPOWER model: singleton

OWER model: singleton

Fig. 3.15: Detailed model of the development process of the transmission and generation system model.

3.2. TESP Example Analysis

69

TESP Documentation, Release 1.0

Thermal integrity factor: R
tabular ntegrity Ger
fact

nerate transactive feeder:
abular i

"E’E analysis

Floor area: tabular Floor area: tabular

GridLAB-D model:
singleton

single story factor: tabular GridLAB-D: analysis
GridLAB-D model:
_____________________________ = singleton

Heat pump factor: tabular

Resistance heating factor: tabular

Air-conditioning factor: tabular

Thermostat setpoints:

tabular tabular

Pool pump factor: tabular

Water heater size factors: tabular P isivta B

Overssizing factor: tabular Oversizing factor: tabular

Thermostat schedule parameters: tuple

Baseline cooling COP: singleton

Transmission voltage: singleton Transmission voltage: singleton
Substation transformer parameters: tuple

factt let
Residential msu\anon>E

parameters: tabular

Standard average customer l6ad:
tabular

Standard breaker ratings: singleton Standard breaker ratings: singleton

2

Standard recloser ratings: singleton

standard recloser ratings: singleton

standard fuse ratings: singleton

Standard transformer ratings: tabular >

solar PV rated insolation: singleton Solar PV rated insolation: singlefon

Fuse oversizi Fuse oversizing factor: singleton

Air conditioner penetration factor:

Alr conditioner penetration factor: singleton

Solar P penetration factor: singleton

Battery penetration factor: singleton Electric water heater penetration factor:
singleton :
Electric water heater penetration factor: singleton

Solar PV efficiency: singleton

Inverter undersizing factor: singleton

Flat-rate price: singleton

Location: singleton

Electric water heater participation factor: singleton

Metrics timestep size: singlet

Simulation timestep size: singleton

apter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Develop Commercial Building Model

The “Develop commercial building model” activity block in the top level diagram (see Fig. 3.13) is defined in further
detail in a sub-diagram shown in Fig. 3.17. The commercial building model is a predefined Energy+ model paired with
a particular TMY3 weather file (converted to EPW for use in Energy+).

act Develop commercial building model /

™
Develop commercial Pammeee N\

P
Y Energy plus model name: -
Energy plus model BYp EnergyPlus: analysis

singleton building model: analysis EnergyPlus model: (

Commercial building model name: singleton

N - . singleton
aSSUMPHONSISOUICENNN - —— - — - - - - - ————————————— ;>{ EnergyPlus model:
singleton =
5 Distribution system location:
singleton - - =
Distribution system P
location: singleton =T EPW weather files:
:| singleton J
EPW weather files: ~ 4

singleton

Weather Data and
Assumptions: source _
. ;,,‘

o= o TMY3 file: singleton

TMY3 file: singleton

Fig. 3.17: Detailed model of the development process of the commercial building.

Prepare co-simulation

The “Prepare co-simulation” activity block in the top level diagram (see Fig. 3.13) is defined in further detail in a
sub-diagram shown in Fig. 3.18. The core activity is the “Create co-sim config files”” which are used by their respective
simulation tools. Additionally, a special metadata file is created from the GridLAB-D model and is used by several of
the metrics calculations directly.

Co-simulation

The “Co-simulation” activity block in the top level diagram (see Fig. 3.13) is defined in further detail in a sub-diagram
shown in Fig. 3.19. The GridLAB-D model plays a central role as a significant portion of the modeling effort is centered
around enabling loads (specifically HVACs) to participate in the transactive system. In addition to the previously shown
information flows between the activities the dynamic data exchange that takes place during the co-simulation run; this
is shown by the “<<flow>>" arrows.

Accounting Table

The “Accounting table” presentation block in the top level diagram (see Fig. 3.13) is defined in further detail in a
series of sub-diagrams shown below. Each line of the accounting table shown in Fig. 3.11 is represented by a gray
“presentation” block, showing the required inputs to produce that metric.

3.2. TESP Example Analysis 71

TESP Documentation, Release 1.0

act Prepare co-simulation

GridLAB-D model:
singleton

‘Generate transactive feeder:
analysis

GridLAB-D model: singleton
~

simulation start time: , \\\E
sngleton Simulation start time:
-—— -_,-__arzg‘st@_,‘bc
Simulation stop time:
Simulation stop time:
singleton
N _ _ “SMESOLBE
simulation tmestep sizer Sl 2T
singleton
broker address: singleton proker sddress: singleton
Metrics timestep size: N >1:
Strics Hmestep s Metrics timestep size:
singleton
[_ 7‘_5mglegog_>c

timing
ters: tabular

HVAC timing
parameters; tabular

HVAC transactive controller

t HVAC transactive controlleT

arameters: tuple
HVAC thermostat setpoint. .
HVAC thermostat setpoirm

parameters: tabular

Weather forecast

parameters: tuple

2

GridLAB-D model:
singleton

GridLAB-D model metadata JSON: singleton singleton Retail market agent:
analysis
Create co-sim configfiles: S~ __—--—""""
analysis :}'Retawl marketeo-sim config:
singleton T =—o
Teeell GridLAB-D model:
__singleton

GridLAB-D model metadata
JSON: singleton- ~ #

GridLAB-D model metadata

GridLAB-D model meta e
JSON: singletdn
P

JSON: singleton

_ .~ ~GiidLAB-D model
metadata JSON

Create GLD metadata JSON:
analysis
Retall market co-sim config:

GridLAB-D: analysis

GLD co-sim config:
singleton

GridLAB-D co-sim :;m-ﬂ_:
singleton

Commercial building co-sim
config: singleton

Commercial building agent co-sim config:

= - Singleton Commercial building agent co-sim
TTee—— config: singleton Transactive commercial
e building agent: analysis
HVAC agéntee-sim config:
singleton T~ ~ _

Transactive HVAC agent:
analysis

PYPOWER co-5im Comfig:— = — — —
singleton

PYPOWER co-sim config:
singleton

Prepare weather data:

Weath it weath
analysis eather agent weather

data: sngleton Weather agent: analysis

TMYS file: singleton
Weather agent weather

data: singleton

Fig. 3.18: Detailed model of the co-simulation configuration file creation.

72

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act Run co-simulation /

EPW weather files:

Develop commercial singleton :
building model: analysis [_ EnergyPlus: analysis
EPW weather filest
singleton

=~ EnergyPlus mod

singleton
EnergyPlus model:
singleton g) v
& pd Commercial building\co- ‘\
ufiow sim config: singletod, \
- " \
\ \
\
Transactive commercial \ \
s . 5 . '
building agent: analysis \ flows

B0-sim config: singleton

Commercial building aget

TMY3 file: singleton

TMY3 file: singleton

‘Generate transactive feeder:
analysis
\
. GridLAB-D model: singleton
GridLAB-D model: \
singleton \\

\
.

\
Apphancﬁ\gchedu\e file:

Appliance schedule file:
PP singleton

singleton

Setpoint and water schedule

Setpoint an
. \

file: singleton
\

_________ -

Commercial
schedule file: Commercial schedule file:
singletan singleton
.
,
.
’
,
aflown
-
.
‘Weather agent L
weather data; 4" Weather agent co-
Prepare weather data: singleton sim config:
o Weather agent: analysis e
singleton

analysis

‘Weather agent
weather data:
singleton

Retail market agent: analysis

Retail market co
config: singleton

\

“GridLAB-D co-sim
\

N \‘\

LY

\

Commercial bu\ldm\g agent

fig: singleton
\,

Vs
*\Commercial builng so- |
\gim config: singleton BLD co-sim corffig:
\
N

ieral parameters: tuplp

Market general parameters: tuple

PYPOWER: analysis

config: singleton

Transactive HVAC agent:
analysis

Retail rﬁarket co-sim
config: singleton |
|

I [

i

PYPOWER cosim
config:singleton [
! | HVACagent co-sim

’_Ll config: singleton

“gingleton |

N Mo

co-sim config: singlgn
\

Weather agent cosim

Create co-sim config files: analysis

config: singleton

Fig. 3.19: Detailed model of the co-simulation process showing the dynamic data exchanges with “<<flow>>" arrows.

73

3.2. TESP Example Analysis

TESP Documentation, Release 1.0

act AT Average ASHRAE Discomfort Hours /

Ve ™ - b

GridLAB-D: analysis \ (Accounting Table Line ltem: Average ASHRAE \

discomfort hours

Residential indoor air e ’
Residential indoor air

temperature: time)

m -) temperature: time
) series -

I\ series

| Commercial building
aflown ASHRAE discomfort

| .
hours: singleton ’74..

EnergyPlus: analysis ! -

Commercial building ASHRAE discomfort hours: singleton

Fig. 3.20: Average ASHRAE discomfort hours metric data flow

Analysis Validation

The “Analysis validation” presentation block in the top level diagram (see Fig. 3.13) is defined in further detail in a
series of sub-diagrams shown below. These are metrics similar to those in the Accounting Table section but they are
not necessarily defined by the value exchanges and thus fall outside the value model. These metrics are identified by
the analysis designer in cooperation with analysis team as a whole and are used to validate the correct execution of the
analysis.

Simulated System Model

Fig. 3.29 shows the types of assets and stakeholders considered for the use cases in this version. The active market
participants include a double-auction market at the substation level, the bulk transmission and generation system, a
large commercial building with one-way (price-responsive only) HVAC thermostat, and single-family residences that
have a two-way (fully transactive) HVAC thermostat. Transactive message flows and key attributes are indicated in
orange.

In addition, the model includes residential rooftop solar PV and electrical energy storage resources at some of the
houses, and waterheaters at many houses. These resources can be transactive, but are not in this version. The rooftop
solar PV has a nameplate efficiency of 20% and inverters with 100% efficiency. inverters are set to operate at a constant
power factor of 1.0. The rated power of the rooftop solar PV installations varies from house to house and ranges from
roughly 2.7 kW to 4.5 kW.

The energy storage devices also have inverters with 100% efficiency and operate in an autonomous load-following mode
that performs peak-shaving and valley-filling based on the total load of the customer’s house to which it is attached.
All energy storage devices are identical with a capacity of 13.5 kWh and a rated power of 5 kW (both charging and
discharging). The batteries are modeled as lithium-ion batteries with a round-trip efficiency of 86%. Other details can
be found in Table 3.4.

74 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Emissions rates: CO2 emissions
tabular rates: singleton

generator output:
time series

S0x emissions
rates: singleton

P N\ generator output: time
e ~ series
< “
-
- ~ "
- -
L7 _ e =T
. - == A
PYPOWER: analysis L == .
-
L N ~
- N
~ Y
~ N
Bmkpdmer Ay
W N
eneration: time - Ay
~ ~a Y
series ~
~ s
AN s A
~ S NOx emissions rates: !
. s singleton
~ N -
- ~ S
3 ~ s
Wholesale {eal-t\me ~ ~.
A A ~
energy prices; time N
N ~
series N ~
. ~. generator output: timi
~ ~ series
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ - ~
S . generator output: time
~ e series
~
~ e
~
~
~

‘Wholesale real-time energ
prices: time series

Fig. 3.21: Bulk power system (T+G) metrics data flows

3.2.

TESP Example Analysis

75

TESP Documentation, Release 1.0

act AT DERs ~
solar PV generation:
time series
. s
e
Wholesale real-time GridLAB-D model mefadata
energy prices: time 150N: singleton
PYPOWER: analysis seres 7 ’
—_ - /
~ - s !
~ . ~ - . s !
S~ T=~___ 7 solarPvgenergtion:
N ,,“"-..__‘_timeseries,f'
>~ . T
~ e - =
A ~_ s T
1 >o - b
| PN _ -7 pricg’ time series
1 . el !
Hown e - ari.dl.\AB—[;ﬁodel metadata
\y ’,’ -7 JSQN: singleton 7
/_ . 7 - - s = ~ rs
’ ’
GridLAB-D: analysis ,’/" K ‘\)(
e ’ R
f ’
/ ’
Residential solar PV / e price: time series
generation: time series f") ’ =
, , fr_‘l_e;gy_;tomg@'
A <" generation: time
=TT T L series
T=a ’ e GridLAB-D model 7
- = Vi ra -~
Residentiatenergy ’ metadata ISON; singleton
\ storage generation?/~ _ (/ -
time series L~ -
, ’ -~ -
VA .
4o - T~
P -7 S
i s/ -
s, s e energy storage
,"/ ’ - - generation: time series
! -
e =
Create GLD metadata JSON: YT T
- : :5:/ o —===="7"7"" GridLAB-D model
alysis ———— metadata JSON:
singleton
GridLAB-D model
metadata ISON:
singleton

Fig. 3.22: Distributed energy resources (DERs) metrics data flows

76 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act AT Transactive Feeder /)

f PYPOWER: analysis \

Wholesale real-time energy ————
prices: time series Te——x

‘Wholesale real-time energy
prices: time series

~a transactive feeder load:
time series

time series e

transactive feeder load:
time series

Fig. 3.23: Transactive feeder metric data flows

act AT Transmission and Distribution Losses /

/_ PYPOWER: analysis

Bulk power system -"‘---,.________
losses: time series =

transmission losses:

time series
Transmission bus loads ~ == = == _ _ _ _
_ time series ==
/;\ bulk power system transactive
1 bus load: time series
1
aflows
v =
g a - Tofal’c—l.jstomer load:
GridLAB-D: analysis -
- time series

Residential load:
time series

Fig. 3.24: Transmission and distribution network losses metric data flows

3.2. TESP Example Analysis

77

TESP Documentation, Release 1.0

act AV Bulk Power System)

PYPOWER: analysis

Bulk power generation:
time series

Transmission bus load:
time series

-~
~ Rl
Wholesale reakiime energy
pricas: time Series
~

Bulk power generation:

‘Wholesale real-time energy

Wholesale real-time energy
prices: time series

time series

Transmission bus load:
_ time series

prices: time series

Fig. 3.25:

Bulk power system metrics data flows

act AV Average Residential Indoor Air Temperature /

GridLAB-D: analysis

temperature: time series

-
-

PYPOWER: analysis

‘Wholesale real-time energy
prices: time series

Residential indoor air
temperature: time series

‘Wholesale real-time energy
prices: time series

Fig. 3.26: Residential indoor air temperature metric data flows

78

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act AV Commercial Building /
Wholesale real-time energy prices:
PYPOWER: analysis time series
Wholesale real-time energy
prices: time series
EnergyPlus Average Indoor
Air Temperature: time
EnergyPlus: analysis Indoor air series
temperature: = —m—m— =
timeseries _ _ ————=~"7""

Fig. 3.27: Commercial indoor air temperature metric data flows

act AV Residential PV and ES Imp ‘/

o LR anay Transmission bus load:

time series

Transmission bus load:
time series

Residential solar PV

/‘ generation: time series
GridLAB-D: analysis

Residential solar PV
generation: time series

1
1
|
|
|
1
|
|
|
1
1
I
|
|
1
1

Residential energy storage ~ ~ = _
generation: time series T~
-
-
-

Residential energy storage
generation: time series

!
!
!
!
i
!
!
I
1
!
'

Fig. 3.28: Residential rooftop solar PV and energy storage metrics data flows

3.2. TESP Example Analysis

79

TESP Documentation, Release 1.0

Substation Market

%
Change in Cleared | :
Setpoint Price | Locational ’ Bulk
! Marginal o ~ System
: Price = ©
Vo o 5 = —
Building N o 2 &
Load Distribution System Q, = S
v a
lﬁ..__. / =)
\ A Q
m
(& %
S e
@ =
5
Temperature ol Temperature
=3
On/Off or On/Off or
ASetpoint ASetpoint

Fig. 3.29: SGIP-1 system configuration with partial PV and storage adoption
The Circuit Model

Fig. 3.30 shows the bulk system model in PYPOWER. It is a small system with three generating units and three load
buses that comes with PYPOWER, to which we added a high-cost peaking unit to assure convergence of the optimal
power flow in all cases. In SGIP-1 simulations, generating unit 2 was taken offline on the second day to simulate a
contingency. The GridLAB-D model was connected to Bus 7, and scaled up to represent multiple feeders. In this way,
prices, loads and resources on transmission and distribution systems can impact each other.

Fig. 3.31 shows the topology of a 12.47-kV feeder based on the western region of PNNL’s taxonomy of typical dis-
tribution feeders [26]. We use a MATLAB feeder generator script that produces these models from a typical feeder,
including random placement of houses and load appliances of different sizes appropriate to the region. The model gen-
erator can also produce small commercial buildings, but these were not used here in favor of a detailed large building
modeled in EnergyPlus. The resulting feeder model included 1594 houses, 755 of which had air conditioning, and
approximately 4.8 MW peak load at the substation. We used a typical weather file for Arizona, and ran the simulation
for two days, beginning midnight on July 1, 2013, which was a weekday. A normal day was simulated in order for

the auction market history to stabilize, and on the second day, a bulk generation outage was simulated. See the code
repository for more details.

Fig. 3.32 shows the building envelope for an elementary school model that was connected to the GridLAB-D feeder
model at a 480-volt, three-phase transformer secondary. The total electric load varied from 48 kW to about 115 kW,
depending on the hour of day. The EnergyPlus agent program collected metrics from the building model, and adjusted
the thermostat setpoints based on real-time price, which is a form of passive response.

80 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

I?
!

Transactive Varying

\/ \/ Load

192 MW
QOutaged

250 MW O 9
Peaking
Varying

Load \ /

Varying
Load

247 MW /M

Swing]

T O

Fig. 3.30: Bulk System Model with Maximum Generator Real Power Output Capacities

The Growth Model

This version of the growth model has been implemented for yearly increases in PV adoption, storage adoption, new
(greenfield) houses, and load growth in existing houses. For SGIP-1, only the PV and storage growth has actually
been used. A planned near-term extension will cover automatic transformer upgrades, making use of load growth more
robust and practical.

Table 3.4 summarizes the growth model used in this report for SGIP-1. In row 1, with no (significant) transactive
mechanism, one HVAC controller and one auction market agent were still used to transmit PYPOWER’s LMP down
to the EnergyPlus model, which still responded to real-time prices. In this version, only the HVAC controllers were
transactive. PV systems would operate autonomously at full output, and storage systems would operate autonomously
in load-following mode.

3.2. TESP Example Analysis 81

TESP Documentation, Release 1.0

o
J
Y pE
pt =
3
v I3 3
- SEvaR
¥ e
e
R)
=
s .
Al
kY 2
3 EY
k)
- =EIE R SECE
vl 3 : .
i 5
7 e g
4 3 i P4 S,
El ERE
] —3 P
S y e
Ed / = “
57/ ‘ t3
. i
4a
e o
4 s Y
7 For
E
2 Y

Fig. 3.31: Distribution Feeder Model (http://emac.berkeley.edu/gridlabd/taxonomy_graphs/)

Fig. 3.32: Elementary School Model

82 Chapter 3. TESP Demonstrations and Examples

http://emac.berkeley.edu/gridlabd/taxonomy_graphs/

TESP Documentation, Release 1.0

Table 3.4: Growth Model for SGIP-1 Simulations

Case Houses HVAC Con- Waterheaters PV Systems Storage Sys-
trollers tems
1594 1 1151 0 0
(a) No TE
1594 755 1151 0 0
(b) Year O
1594 7 1151 1 2
©) Year 1 59 55 5 59 8
1594 755 1151 311 170
(d) Year2
1594 755 1151 464 253
(e) Year3

Simulation Architecture Model

The SGIP1 analysis, being a co-simulation, has a multiplicity of executables that are used to set-up the co-simulation,
run the co-simulation, and process the data coming out of the co-simulation. The Analysis Design Model provides hints
at which tools are used and how they interact but is not focused on how the tools fit together but rather how they can
be used to achieve the necessary analysis objectives. This section fleshes out some of those details so that users are
better able to understand the analysis process without having to resort to looking at the scripts, configuration files, and
executable source code to understand the execution flow of the analysis.

Simulated Functionalities

The functionalities shown in Fig. 3.29 are implemented in simulation through a collection of software entities. Some
of these entities perform dual roles (such as PYPOWER), solving equations that define the physical state of the system
(in this case by solving the powerflow problem) and in also performing market operations to define prices (in this case
by solving the optimal power flow problem).

e GridLAB-D

— Simulates the physics of the electrical distribution system by solving the power flow of the specified dis-
tribution feeder model. To accomplish this it must provide the total distribution feeder load to PYPOWER
(bulk power system simulator) and receives from it the substation input voltage.

— Simulates the thermodynamics and HVAC thermostat control for all residential buildings in the specified
distribution feeder model. Provides thermodynamic state information to the Substation Agent to allow
formation of real-time energy bids.

— Simulates the production of the solar PV panels and their local controller (for the cases that include such
devices).

— Simulates the physics of the energy storage devices and the behavior of their local controllers.
¢ Substation Agent

— Contains all the transactive agents for the residential customers. Using the current state of the individ-
ual customers’ residences (e.g. indoor air temperature) These agents form real-time energy bids for
their respective customers and adjust HVAC thermostat setpoints based on the cleared price.

3.2. TESP Example Analysis 83

TESP Documentation, Release 1.0

— Aggregates all individual HVAC agents’ real-time energy bids to form a single bid to present to the
wholesale real-time energy market.

* EnergyPlus
— Simulates the thermodynamics of a multi-zone structure (an elementary school in this case)
— Simulates the integrated controller of said structure

— Communicates electrical load of said structure to GridLAB-D for its use in solving the powerflow of
the distribution feeder model.

* PYPOWER

— After collecting the load information from GridLAB-D (and scaling it up to a value representative of
an entire node in the transmission model) solves the bulk power system power flow to define the nodal
voltages, communicating the appropriate value to GridLAB-D.

— Using the bid information from the generation natively represented in the bulk power system model
and the price-responsive load bids provided by the Substation Agent, find the real-time energy price
for each node the bulk power system (the LMP) by solving the optimal power flow problem to find
the least-cost dispatch for generation and flexible load. Communicate the appropriate LMP to the
Substation Agent.

sd ClearingSequence J

GridLAB-D SubstationAgent PYPOWER Energy+ Agent Energy+

I
I
FNCS{SubstationLoad) }

-

FNCS(Bus
U< ‘oltage]

FNCS(Temnperature, Voltage, HYAC Power, HVAC
[———————————State}——

AgentBids()

Aggregate()

FNCS(AggregatedBid)

A J

QPF()

FNCS(LMP)
-t
g
ClearMarket()
AdjustSetpoints()
FNCS(Setpaint,
Price)
-
L—J‘

FMCS(ElectricalLoad)

FNCS(LMP)

FNCS(Setpaint:
(Setpoints) AdjustSetpaints()

L FNCS(ElectricalLoad)
i i

A

FMNCS(DistributionLoad)

8]

PF()
FNCS(BusValtage)
o=

Fig. 3.33: Sequence of operations to clear market operations

84 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Figure Fig. 3.33 is a sequence diagram showing the order of events and communication of information between the
software entities.

Due to limitations in the load modeling provided by Energy+, some expected interactions are not included in this system
model. Specifically:

* The loads modeled internally in Energy+ are not responsive to voltage and thus the interaction between it and
GridLAB-D is only one way: Energy+ just provides a real power load; GridLAB-D does not assume a power
factor and the the Energy Plus Agent (which is providing the value via FNCS) does not assume one either.

* The Energy Plus agent is only price responsive and does not provide a bid for real-time energy.

Software Execution

As is common in many analysis that utilize co-simulation, the SGIP1 analysis contains a relatively large number of
executables, input, and output files. Though there are significant details in the Analysis Design Model showing the
software components and some of the key data flows and interactions between them, it does not provide details of how
the software is executed and interacts with each other. These details are provided below, focusing on the input and
output files created and used by each executable.

Software Architecture Overview

Figure Fig. 3.34 provides the broadest view of the analysis execution. The central element is the “runSGIPn.sh” script
which handles the launching of all individual co-simulation elements. To do this successfully, several input and con-
figuration files need to be in place; some of these are distributed with the example and others are generated as a part
of preparing for the analysis. Once the co-simulation is complete, two different post-processing scripts can be run to
process and present that results.

act top_level .~

Vd ™ Ve ™
Inherited input files | | validation_plots.py
) __H__._H-q_“"a - Ve "‘\‘ - - | o0)
ANy / T~ runSGIP1n.sh V- ANy /
-7 E M i / N -
~ ™ - - S~ Ve ™,
prepare_cases.py | 5 “=x[createAccountingTable.py |

Fig. 3.34: Overview of the software execution path

3.2. TESP Example Analysis 85

TESP Documentation, Release 1.0

Inherited Files

Figure Fig. 3.35 provides a simple list of files that are distributed with the analysis and are necessary inputs. The
provenance of these files is not defined and thus this specific files should be treated as blessed for the purpose of the
SGIP1 analysis.

act inherited_input_files /
afilen afilen
Arizona TMY3.epw appliance_schedules.glm
ufilen & ufilen
SchoolDualController.idf water_and_setpoint_schedule v5.glm
ufilen afilen
pypower.yaml commercial_schedules.glm
afiles afilen
eplus.yaml eplus_agent.yaml
ufilen afilen
SGIP1n.glm sgipl_pp.json
afilen
AL-
Tucson_International_Ap.tmy3

Fig. 3.35: List of files distributed with the SGIP1 analysis that are required inputs.

86 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

prepare_cases.py

Figure Fig. 3.36 shows the process by which the co-simulation-specific files are generated. The weather agent uses a
specially-formatted weather file that is generated by the “weathercsv” method in “TMY3toCSV.py”. After this com-
pletes the “glm_dict.py” script executes to create the GridLAB-D metadata JSON. Lastly, the “prep_substation.py”
script runs to create co-simulation configuration files. “prepare_cases.py” does this for all the cases that the SGIP1
analysis supports.

act prepare_cases.py /
ufilen
AZ- "
Tucson_International_Ap.tmy3 efilen
SGIP1n_agent_dict.json
\
wflown _
s A—-\ Pammmeee % o~ «fiown
weathercsv in TMY3toCSV.py | tesp.gim_dict tesp.prep_substation
77777777777777777777 — «filen
- === sGIP1n_substation.yaml
aflows
\ V, D N y
T N
T \ S S
\ v \ -
wflown \ A «flows
] «flown N ‘\\\ «filen
N \ \ SGIP1n_FNCS_Config.txt
afilen | ‘\
weather.dat N 5 aflown
«filen \
SGIP1n_gim_dict.json \
A

X afilen
5GIPIn_Weather_Config.txt

Fig. 3.36: Co-simulation files generated by “prepare_cases.py” in preparation of performing the analysis proper.

runSGIPn.sh

Figure Fig. 3.37 shows series of executables launched to run the SGIP1 co-simulation analysis. All of the activity blocks
denote a specific executable with all being run in parallel to enable co-simulation. Each executable has its own set of
inputs and outputs that are required and generated (respectively). Though most of these inputs are files (as denoted by
the file icon), a few are parameters that are hard-coded into this script (e.g. the EnergyPlus Agent). Some input files
have file dependencies of their own and these are shown as arrows without the “<<flow>>" tag. The outputs generated
by each executable generally consist of a log file and any data collected in a metrics file.

validation_plot.py

Figure Fig. 3.38 shows the inputs files generated by the co-simulation that are used to generate plots used to validate
the correct operation of the co-simulation. TESP provides scripts for post-processing the metrics files produced by the
simulation tools and these are used to create Python dictionaries which can be manipulated to produce the validation
plots.

3.2. TESP Example Analysis 87

TESP Documentation, Release 1.0

actrunsGiPinsh

fncs_broker

ifow ™=

dien
eplus.yam!

EnergyPlus

I~ own
dien
TMY3.epw
efiles
eplus_agent.yami
- dfiown

o~ -

e EnergyPlus Agent

simulation duration
and stepsize

“diows

down ~

B

dien
brokertn.jog

B

e
eplustn.iog

dien @)

eplus_agentin.log

o

fiows

controller

flen
SGPI1n.gim

e
S6IP1n_substation.yaml

il
SGIP1n_agent_dictjson

afles
sgip1_pp.json

adiown ===~

fncsPOWER.

>

~ o

afien
pypower.yami

B

fien
SGIP1n_Weather_Config.txt

sy

tesp.startWeatherAgent

e
weather.dat

B

—
[tesp.substation_loop

[tespwone toopin

T dows

efles
gridlabdin.log

efles
eplus_SGIPIn_metrics.json

B

e
biling_meter_SGIP1n_metrics.json

e
GridLABD capacitor_SGIP1n_metricsjson

o

“diows ~

fiown>
eien
evchargerdet_SGIP1n_ metics.json
s B
house_SGIPin_metrics son
ier B
inverter_SG1P1n_metrics.json
ier B
line_SGIPIn_metrics son
s
regulator_SGIP1n_metrics.json]
s
transformer_SGIP1n_metrics.json
eien
substationtn.log B
Lefiows
. s

e
auction_SGIP1n_metrics,json

e
controller_SGIP1n_metrics.json

B

afiows T

e
substation_SGIP1n_metrics,json

filen
Pypowerln.log

B

dien
bus_SGIP1n_metrics.json

B

dien
gen_SGIP1n_metricsjson

B

\ e
sys_SGIPLn_metrics.json

B

il

B

weatherin.log

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act validation_plots.py
«filen N
eplus_SGIP1n_metrics.json N
\
N
N
N
N
\
«filen \
bus_SGIP1n_metrics.json N N
N N
~ \
~ N
~ .
N aflow»
~ ‘\
<[f\|En‘) - S N
gen_S5GIP1n_metrics.json ~ ~
i - S aflow N
.
wscripty wflown .
process_pypower <len
sys_SGIP1n_metrics.json
load_data() = ~———_
aflows
L1 = | g
process_gld
ufilen -7 7 uflown
SGIPIn_gim_dict.json
. -7 .
wscripts - uflown
process_eplus P
«filen <cﬂnw»,-’
substation_SGIP1n_metrics.json V7
7
4 aflows
o’
s ’ s
/ 7 !
/
afilen ; «flows +
house_SGIP1n_metrics.json .) '_" I
f’ ’ ! tf
s / -
A «flown
’ /f [
¢ / J
/ !
afilen y /| aflows
billing_meter_SGIP1n_metrics.json F; / }’
’ oy
i L
i ! ’
7 Iy
’ ! h
/
h I
wfilen / /
inverter_SGIP1n_metrics.json / ,."
.'f ’
; 7
’ i
; i
A '
’
afilex /)
capacitor_SGIP1n_metrics.json !
!
'
i
I
wfilen
regulator_SGIP1n_metrics.json

simulation.

Fig. 3.38: Post-processing of the output metrics files to produce plots to validate the correct execution of the co-

89

3.2. TESP Example Analysis

TESP Documentation, Release 1.0

createAccountingTable.py

Figure Fig. 3.39 shows the input metrics files to used to calculate the final accounting table output from the metrics
identified by the Valuation Model.

Data Collection

The data collection for TESP is handled in a largely standardized way. Each simulation tool produces an output dataset
with key measurements. This data is typically stored in a JSON file (with an exception or two where the datasets are
large and HDFS5 is used). The specific data collected is defined in the metrics section of the TESP Design Reference.

The JSON data files are post-processed by Python scripts (one per simulation tool) to produce Python dictionaries that
can then be queried to further post-process the data or used directly to create graphs, charts, tables or other presentations
of the data from the analysis. Metadata files describing the models used in the analysis are also used when creating
these presentations.

Running the Example

As shown in Table 3.4, the SGIP1 example is actually a set of five separate co-simulation runs. Performing each
run takes somewhere around two hours (depending on the hardware) though they are entirely independent and thus
can be run in parallel if sufficient computation resources are available. To avoid slowdowns due to swapping, it is
recommended that each run be allocated 16Gb of memory.

To launch one of these runs, only a few simple commands are needed:

cd ~/tesp/examples/sgipl

python3 prepare_cases.py # Prepares all SGIP1 cases
run and plot one of the cases

./runSGIP1b.sh

./runSGIP1b. sh will return a command prompt with the co-simulation running in the background. To check how far
along the co-simulation monitoring one of the output files is the most straight-forward way:

[tail -f SGIP1b.csv }

The first entry in every line of the file is the number of seconds in the co-simulation that have been completed thus far.
The co-simulation is finished at 172800 seconds. After that is complete, a set of summary plots can be created with
the following command:

[pyth0n3 plots.py SGIP1b J

Analysis Results - Model Validation

The graphs below were created by running validation_plots.py (TODO: Update default path to match where the
data will be) to validate the performance of the models in the co-simulation. Most of these plots involve comparisons
across the cases evaluated in this study (see Table 3.4).

90 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

act createAccountingTable.py /

Emissions rates

afilen
inverter_SGIP1n_metrics.json

afilen
gen_SGIP1n_metrics.json

ufilen
SGIP1n_gim_dict.json

afilen
bus_SGIP1n_metrics.json

ufilen
house_SGIP1n_metrics.json

afilen
billing_meter_SGIP1n_metrics.json

ufilen
auction_SGIP1n_metrics.json

afilen afilen
substation_SGIP1n_metrics.json 5GIP1n_agent dict.json
~]
-~ - b N L
> ~ 1
~ |
Y - 1
S |
- \
. aflown. \
-~ ~
s aflow»
-~]
-)
-
- |
aflowrs = - \
|
v
aflown createAccountingTable.py
o aflows
TTT N
- I
— == uflows - S .
- s / I
I
|
- I
- |
-
. I
P wflown |
-~
- . I
-7 aflow» '
- P ’ |
-~ - s]
- #
* I
pd 1
p
- R aflown
1
- uflown |
rd r Fa
’ ’ 1
e r I |
ey r I
il ’ / I
I !]
£
/ I
s
s ! !
/ i/ I
’ r |
e ’ d |
ra /]
/ J
7/ ! |
’ / |
ufilen wfilen
controller_SGIP1n_metrics.json $GIP1n_m_dict.json

Fig. 3.39: Post-processing of the output metrics files to produce the necessary metrics for the accounting table.

3.2. TESP Example Analysis

91

TESP Documentation, Release 1.0

Comparison of Generator Output

250 A

— ./

200 A

150

MW

100

50 ~

0 10 20 30 40 50
Simulated time (hrs)

Fig. 3.40: Generator outputs of bulk power system, showing the loss of Unit 3 on the second day.

92 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Comparison of Marginal Price at Bus 7

—— Case (a) - Non-transactive
—— Case (b) - Transactive
0.4
0.3 +
=
=
v
~
&)
3 0.2
0.1 4
0.0 +

0 10 20 30 40 50
Simulated time (hrs)

Fig. 3.41: Wholesale market prices (LMPs) for base and transactive cases, showing lower prices during the peak of the
day as transactively participating loads respond.

3.2. TESP Example Analysis 93

TESP Documentation, Release 1.0

Comparison of Total Load at Bus 7

275 1 - 0.40
H
250 .i,= - 0.35
- L 0.30
225 A i
opi L
AT - 0.25
200 A "’ ::: '§
; | & =<
= Vi ! ! - 0.20 &
/ 11! [9))]
175 ﬁ ! %
! i - 0.15
150 A ; |
] - 0.10
1251 —— Case (b) - Transactive i
Case (a) - Non-transactive ’j] - 0.05
1004 -»---€ase-(b)~Transactive Pric& “==------ st T
. . : : , +0.00
0 10 20 30 40 50

Simulated time (hrs)

Fig. 3.42: Total load for transactive feeder in base and transactive case. Should show peak-shaving, valley-filling, and

snapback as prices come down off their peak.

94

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Comparison of Total Load at Bus 7

2751 I
2501
225 A ' Hﬁ; ﬁlw‘ li
2004
175

150

125 4

—— CcCase (b) - 0 PV/ES systems
—— Case (c) - 159/82 PV/ES systems
—— Case (d) - 311/170 PV/ES systems

i — Case (e) - 464/253 PV/ES systems

0 10 20 30 40 50
Simulated time (hrs)

Fig. 3.43: Total load for transactive feeder in for four transactive cases with increasing levels of rooftop solar PV and
energy storage penetration.

3.2. TESP Example Analysis 95

TESP Documentation, Release 1.0

Comparison of Residential Indoor Temperatures

1001 — Case (a) - Non-Transactive - 0.40
—— Case (b) - Transactive
95 " Case (b) - Transactive Price - 0.35
- 0.30
90 A
- 0.25
E
L
g 857 020 &
© . 7]
D
80] B 0.15
- 0.10
75 A
- 0.05
70 1 T T T T T |_ 000
0 10 20 30 40 50

Simulated time (hrs)

Fig. 3.44: Average residential indoor air temperature for all houses in both base and transactive case. The effect of the
transactive controller for the HVACS drives lower relatively lower temperatures during low price periods and relatively
higher prices during higher periods.

96 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Comparison of Commercial Building Indoor Temperature

81 1 - 0.40
80 - - 0.35
- 0.30
79 .
'
' - 0.25
| —— Case (a) - Non-transactive ! <
w 78 ! =
> —— Case (b) - Transactive 1 L 020 g
© ---- Case (b) - Transactive Price | i ' S
77 T !
! - 0.15
!
76 1 g - 0.10
75 4 ': - 0.05
: : : : - 0.00

0 10 20 30 40 50
Simulated time (hrs)

Fig. 3.45: Commercial building (as modeled in Energy+) indoor air temperature for the base and transactive case.

Results should be similar to the residential indoor air temperature with lower temperatures during low-price periods
and higher temperatures during high-price periods.

3.2. TESP Example Analysis 97

TESP Documentation, Release 1.0

Comparison of Total Residential PV Output

1400 ~

1200 ~

1000 ~

800

kW

600

ol AN

—— Case (b) - 0 PV systems
20041 —— Case (c) - 159 PV systems
—— Case (d) - 311 PV systems
o4 —— Case (e) - 464 PV systems
0 10 20 30 40 50

Simulated time (hrs)

Fig. 3.46: Total residential rooftop solar output on the transactive feeder across the four cases within increasing pen-
etration. The rooftop solar is not price responsive. As expected, increasing PV penetration showing increased PV
production.

98 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Comparison of Total Residential ES Output

100
50 +
0 .
2
_50]
—— Case (b) - 0 ES systems
—— Case (c) - 82 ES systems
—100 7 —— Case (d) - 170 ES systems
—— Case (e) - 253 ES systems

0 10 20 30 40 50
Simulated time (hrs)

Fig. 3.47: Total residential energy storage output on the transactive feeder across the four cases within increasing
penetration. The energy storage controller engages in peak-shaving and valley-filling based on the billing meter for the
residential customer.

3.2. TESP Example Analysis 99

TESP Documentation, Release 1.0

Analysis Results - Key Performance Metrics

The final results for the key performance metrics are presented below in Table 3.5 and Table 3.6. These tables are
provided to help benchmark results.

Table 3.5: Accounting Table, Day 1

Metric Description SGIP1a SGIP1b SGIP1c SGIP1d SGIP1e
Day 1 Day 1 Day 1 Day 1 Day 1

Wholesale electricity purchases for test 1394 1363 1261 1159 1065

feeder (MWh/d)

Wholesale electricity purchase cost for test $31,414.83 $33,992.28 $30,940.02 $27,869.27 $25,287.68

feeder ($/day)

Total wholesale generation revenue ($/day) $213,441.28 $237,176.68 $230,705.91 $224,178.12 $218,903.29

Transmission and Distribution Losses (% of 0.03 0.03 0.03 0.03 0.03

MWh generated)

Average PV energy transacted (kWh/day) 0.0 0.0 17.6 34.3 51.2

Average PV energy revenue ($/day) $0.00 $0.00 $127.65 $242.23 $353.86

Average ES energy transacted (kWh/day) 0.00 0.00 0.68 0.98 0.88

Average ES energy net revenue $0.00 $0.00 $4.98 $7.84 $8.16

Total CO2 emissions (MT/day) 0.70 0.79 0.78 0.76 0.75

Total SOx emissions (kg/day) 0.01 0.01 0.01 0.01 0.01

Total NOx emissions (kg/day) 0.05 0.05 0.05 0.05 0.05

Table 3.6: Accounting Table, Day 2

Metric Description SGIP1a SGIP1b SGIP1c SGIP1d SGIP1e
Day 2 Day 2 Day 2 Day 2 Day 2

Wholesale electricity purchases for test 1458 1421 1314 1213 1112

feeder (MWh/d)

Wholesale electricity purchase cost for test $197,668.90 $162,838.08 $125,429.86 $95,077.07 $70,833.33

feeder ($/day)

Total wholesale generation revenue ($/day) $1,219,691.4 $1,065,540.5 $884,707.64 $724,209.63 $581,815.57

Transmission and Distribution Losses (% of 0.03 0.03 0.03 0.03 0.03

MWh generated)

Average PV energy transacted (kWh/day) 0.0 0.0 18.5 36.0 53.8

Average PV energy revenue ($/day) $0.00 $0.00 $667.30 $1,034.39 $1,188.40

Average ES energy transacted (kWh/day) 0.00 0.00 0.08 0.09 0.02

Average ES energy net revenue $0.00 $0.00 $4.77 $8.56 $11.76

Total CO2 emissions (MT/day) 3.61 3.21 2.72 2.27 1.86

Total SOx emissions (kg/day) 0.03 0.03 0.02 0.02 0.02

Total NOx emissions (kg/day) 0.23 0.21 0.17 0.15 0.12

The following graphs were created by running createAccountingTable.py and plotAccountingTable. py, which
calls the function 1ca_standard_graphs.py. These plots involve comparisons across the cases evaluated in this
study (see Table 3.5 and Table 3.6). As shown in :numref: 7bl_sgipl, the cases a through e correspond to a growth
model of progressive adoption of transactive energy. Case a is no transactive energy and case b is the control year
with transactive. Cases ¢ through e account for increased adoption of PV and energy storage systems. These cases are
analyzed over two days of operation, where the first day is a control with regular operations, and the second experiences
the trip of a generator. These graphs convey the respective results from the simulation.

The wholesale energy purchased at the test feeder reduces with the growth model, however with the generator trip on
day two, energy demand increases slightly.

100 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Wholesale Energy Purchased at Test Feeder

1400 4

1200 1

1000 4

800 1

MWh per day

600 1

400 4

200 4

SGIP1d
SGIPle

[1+] =] L&]
— =l —
a o o
] 0] U]
un 5] [y]

3.2. TESP Example Analysis 101

TESP Documentation, Release 1.0

The cost of wholesale energy decreases slightly on day one with adoption of PV and energy storage. This decrease in
cost is more dramatic on the second day with the generator trip.

Wholesale Energy Cost at Test Feeder

$200,000 -

$175,000 -

$150,000 -

$125,000 -

$100,000 -

$ per day

$75,000 -

$50,000 -

$25,000 -

$0 -

© o U o Ll
— — - — —
= a a o a
o]]] U] 9
N] L]]

The total revenue to the generators is much more on the second day with the generator failure, although this revenue
reduces with the growth model.

The average PV energy transacted in the system increases with adoption, and this amount progressively diverges with
the generator trip on the second day.

The average revenue to households with PV markedly increases on the second day with the generator trip.

The average energy storage energy transacted is much larger on day one compared with day two. The impact of the
generator trip is nonlinear with increasing adoption of storage.

Regardless of the average energy transacted, the average revenue to households is much larger on day two.

The following graph dispays the total daily emissions by greenhouse gas type (CO2 is in units of MT, or 1000 kg).
Between case a (no transactive) and case b (transactive year 0), the CO2 emissions jump by 100 MT in day one. The
emissions in day two increase between these two cases as well by about half as much. Across all cases, the total
emissions on day one are higher with transactive compared to without. On day two, the growth model cases experience
less total emissions than the non-transactive case.

102 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Total Generator Revenue

41,200,000 - B Dayl
B Day 2

$1,000,000 -

$800,000 -

$600,000 -

$ per day

$400,000 -

$200,000 -

$0 -

SGIPle

v o] g
— — — —
o a = a
? ? ? ?

3.2. TESP Example Analysis 103

TESP Documentation, Release 1.0

PV Energy Transacted

B Dayl
B Day 2
50 4 y
40 |
=
[
o
w30 1
w
o
=
=
v
201
10 1
0 T T
o el U - ©
— — — — —
=] =] a =3 =]
a [} [[} 6]
;]] (] ry] 3]

104 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

$1,200 -

$1,000 -

$800 -

$ per day

$400 -

$200 -

$0

PV Average Revenue

$600 -

B Dayl
B Day 2

SGIP1a -

SGIP1b

SGIP1c

g w
— —
a =
? ?

3.2. TESP Example Analysis

105

TESP Documentation, Release 1.0

ES Energy Transacted

1.0 -

0.8 1

kWh per day
o
=]

e
I

0.2 -

0.0

SGIPla
SGIP1b
SGIP1c
SGIP1d
SGIPle

106 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

ES Average Revenue

$12 1 mmm Day 1
B Day 2
$10 -
$8 1
=2
[i»]
=]
_
6_
o $
o
$4
$2
$0 . .
(1%}] (%] =] [i§]
— — - — —
o a o a a
] o] o] (] o]
(M) (W5] [¥5] u (W5]

3.2. TESP Example Analysis 107

TESP Documentation, Release 1.0

800 -
700 -
600 -
=
1]
]
T 500 A
o
9 B MNOx
S 4001 B SOX
E B CO2 [le3]
aQ
‘6 300 -
o
St
200
100 -
0-
] 0] = [1¥]
- — — = -
o o = o o
]]] &)]
LN 73] LN

u [Ty}
Day 1 (left, dark) vs Day 2 (right, light)

108 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Related Publications

This use of TESP to perform the SGIP1 analysis resulted in the following related publications:

S. E. Widergren, D. J. Hammerstrom, Q. Huang, K. Kalsi, J. Lian, A. Makhmalbaf, T. E. McDermott,
D. Sivaraman, Y. Tang, A. Veeramany, and J. C. Woodward. Transactive Systems Simulation
and Valuation Platform Trial Analysis. Technical Report PNNL-26409, Pacific Northwest Na-
tional Laboratory (PNNL), Richland, WA (United States), Richland, WA, Apr. 2017. DOI:
10.2172/1379448. Available at: http://www.osti.gov/servlets/purl/1379448/

Q. Huang, T. McDermott, Y. Tang, A. Makhmalbaf, D. Hammerstrom, A. Fisher, L. Marinovici, and
T. D. Hardy. Simulation-Based Valuation of Transactive Energy Systems. Power Systems, IEEE
Transactions on, May 2018. DOI: 10.1109/TPWRS.2018.2838111. Available at: https://ieeexplore.
ieee.org/document/8360969/

_ Copyright (c) 2021-2023 Battelle Memorial Institute _ file: examples_index.rst

3.2.2 DSO+T Analysis

The Pacific Northwest National Laboratory completed a multi-year study where a transactive energy system was im-
plemented to allow a number of distribution system assets to participate in an integrated retail and wholesale real-time
and day-ahead energy markets. The study had the following specific objectives

* Does the large-scale transactive coordination produce stable, effective control?

* IsaDSO+T deployment of flexible assets at-scale cost effective, particularly comparing batteries vs flexible loads
and deployments in moderate- vs high-renewable power systems?

* How much could a DSO+T implementation benefit and save consumers, looking at comparisons between those
that participate in the transactive system and those that don’t and residential versus commercial customers.

This documentation is a brief summary of a much more extensive series of reports.
¢ Distribution System Operator with Transactive (DSO+T) Study Volume 1: Main Report.
e DSO+T: Integrated System Simulation DSO+T Study: Volume 2
e DSO+T: Transactive Energy Coordination Framework DSO+T Study: Volume 3
e DSO+T: Valuation Methodology and Economic Metrics DSO+T Study: Volume 4
e DSO+T Expanded Study Results; DSO+T Study: Volume 5

Distribution System Operator and Transactive (DSO+T) Study

The Pacific Northwest National Laboratory completed a multi-year study where a transactive energy system was im-
plemented to allow a number of distribution system assets to participate in an integrated retail and wholesale real-time
and day-ahead energy markets. The study had the following specific objectives

¢ Does the large-scale transactive coordination produce stable, effective control?

* IsaDSO+T deployment of flexible assets at-scale cost effective, particularly comparing batteries vs flexible loads
and deployments in moderate- vs high-renewable power systems?

* How much could a DSO+T implementation benefit and save consumers, looking at comparisons between those
that participate in the transactive system and those that don’t and residential versus commercial customers.

For this study, an ERCOT-spanning electrical power system model was constructed that reached in scope from bulk
power system generation to individual customer loads. This included modeling 10,000s of thousands of customers with
unique residential, load, and market-participating device models, as shown in Figure :numref: fig_dsot_scope_scale.

3.2. TESP Example Analysis 109

http://www.osti.gov/servlets/purl/1379448/
https://ieeexplore.ieee.org/document/8360969/
https://ieeexplore.ieee.org/document/8360969/
https://doi.org/10.2172/1842485
https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842489
https://doi.org/10.2172/1842491
https://doi.org/10.2172/1984526

TESP Documentation, Release 1.0

Generation Transmission Distribution Customers Assets
& y
i '1‘."-' \ [
0 2
s’,ffj_ﬂ

Fig. 3.48: DSO+T modeled infrastructure

Some fraction of the customer-owned assets (HVAC, electric water heaters, and batteries) were implemented such that
they participated in a retail energy market run by the modeled distribution system operators (DSOs). These DSOs
aggregated the price-responsiveness of the assets and presented this flexibility to the wholesale market being run by
the transmission system operator (TSO). Both entities ran real-time and day-ahead energy markets.

The simulations were run on models not only replicating the state of the ERCOT power system today but also consider-
ing a number of alternative futures scenarios. Specifically, a high-renewable generation mix with increased utility-scale
wind and both increased utility-scale and distributed rooftop solar was modeled. On the load side, the transactive mech-
anism was compared using just flexible loads as well as just using customer-owned batteries.

An entire calendar year was simulated to capture the effects of peak loads that may occur in summar or winter, depending
on the geographic location within the system.

The documentation of the system provided here is a summary of the extensive documentation produced by the DSO+T
analysis team. The version of codebase included here in TESP is similar to but not identical to that used to perform the
study. Results produced by this codebase will likewise be similar but not identical. Comprehensive documentation of
the study can be found in the following reports:

¢ Distribution System Operator with Transactive (DSO+T) Study Volume 1: Main Report.
e DSO+T: Integrated System Simulation DSO+T Study: Volume 2

e DSO+T: Transactive Energy Coordination Framework DSO+T Study: Volume 3

e DSO+T: Valuation Methodology and Economic Metrics DSO+T Study: Volume 4

* DSO+T Expanded Study Results; DSO+T Study: Volume 5

Software Architecture

The DSO+T analysis, though run on a single local compute node, has a relatively complex software architecture. There
are a number of software entities that interact through a variety of means, as shown in Figure Fig. 3.49.

Each of the gray dashed-outlined boxes represents a key executable in performing the DSO+T analysis. Some of these
executables use other software entities from the same codebase to perform specific functions. For example, GridLAB-D
has specific function written to allow it to implement models of water heaters, HVAC systems, and residential struc-
tures. Similarly, the substation_dsot.py calls other Python scripts to implement control agents for the loads modeled
in GridLAB-D. These interactions are shown in dark-red arrows to indicate the data exchange between the software
entities is happening in-memory and is largely invisible to the analyst running the simulation.

Another form of data-exchange is realized through simple file-system access. There are a number of static data files
that are fed into the simulation. These largely consist of weather data that is used by a number of the software entities
as they perform their functions. These interactions are indicated by green arrows from the files on disk to the software
entities that use them.

110 Chapter 3. TESP Demonstrations and Examples

https://doi.org/10.2172/1842485
https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842489
https://doi.org/10.2172/1842491
https://doi.org/10.2172/1984526

TESP Documentation, Release 1.0

! I
_________ 1 Distributi
[ts0.py] real-time market bids and dispatch, I;;:;t:n; I *]
 lusing PSST and PyPOWER) | day-ahead market bids and dispatch, Solar [P L. Wl . |
1 Bulk Power System | substation voltage and load Forecast | . pv_dsot.py : » forecasting dsot.py |
1 Market g | 1 o s ! Weather 1
I v 3 PV 4 Forecaster !
I I . A t I4—!) I
Bulk Power System] m———m = ——— ' gents] ' A
I Physics | GridLAB-D.exe | | . 1 ' Water Draw ' |
1 1 | | | 1 ' : Forecaster : |
_________ | 1 gttt .
! e I
| I —
| |3FeederDistribution | ! '] ¢ “hvac_dsotpy | . !
I System Model | |] L Non-pfmt':::pahng |
HVAGC ' oax
| : ! +: Agents ' Forecaster |
Wind Solar | A I : i 1 * |
Generation . e——|
and generation — | load state, I SNRa— e A — . |
Forecast | House HVAC control signals e e . ' v ! retail_market_dsotpy , |
0 Model Model It::__:>|] ev_dsot.py] ! - v
I !] ! ‘_I—D Site Agent |- Je‘s“ |
I s N ' arket
WH EV | 1 . EV .
| | | e] P e | o
Utility-Scale | . | L : ' |
Solar | | o R I B "
Forecast | Battery PV 1 | I
| Model Model | e ———
| + battery dsot.py] [A 1 |
| | | : b . dso_market_dsotpy , |
-Si on . E | 1 Battery ' ' Vo
Co-Simulation | : Agents : : DSO Agent] |
' '
[~ ! b
™Y weather state | # i v
th | [P R Eaane ! J
Memory wial o . A + water_heater_dsot.py | { LMP |
Ll | . | ' Forecaster v
| weatherAgent.py | | ! L] 1
| | Ly, EWH ' ' |
Weather | . Agents : e eememaemnne)
| Player | | .]
| 1 ' 1 |
- | |
! I

.

Fig. 3.49: High-level DSO+T software architecture diagram

The last interaction is perhaps the most complex: co-simulation. Utilizing the HELICS co-simulation platform, all
the software entities have been written to allow run-time data exchange, enabling the operation of one entity to affect
another during execution. This functionality is essential to modeling the scale and complexity of the the system un-
der analysis. The labels on the blue co-simulation data-exchange arrows summarize the data exchanged between the
indicated entities.

Market Structure and Interactions

The market structure for the transactive system implemented for the DSO+T was split into two portions: wholesale and
retail. The DSO+T study had as a design requirement that the design of the retail market could not require changes to
the wholesale market architecture or operation patterns. Thus the market architecture shown in Figure Fig. 3.50 was
used as representative of many of the wholesale market structures in the United States.

The DSO provided load forecasts to the wholesale market (from the retail market it was running) in both the day-ahead
and real-time energy markets. The wholesale market treated this as fixed quantity demand bids and with the generator
marginal cost bids ran a security constrained unit commitment (day-ahead market only) and/or a security constrained
economic dispatch. The former was used to to provide hourly dispatches to the market participants and the later was
used to provide five-minute dispatches.

The retail market was designed specifically for the DSO+T study and its structure can be see in Figure Fig. 3.51

The DSO had the responsibility of providing market/load forecast information for all customers in it’s jurisdiction and
thus had to estimate loads for those not participating the in the transactive system as well as receiving bid information
for those participating. Since the communication with the day-ahead market occurred at a specific time and was not
communicated as a price-responsive bid curve but a fixed demand quantity, the retail day-ahead market operated in an
iterative manner to allow all retail market participants to converge on a day-ahead bid that accounted for their expected
flexibility. This iterative process also used weather and solar production forecasts as well as a generic wholesale market
marginal cost curve that acted as a wholesale price estimator. After the wholesale markets cleared (day-ahead and real-

3.2. TESP Example Analysis 111

https://helics.org

TESP Documentation, Release 1.0

delivery
constraints

delivery
constraints

Independent System Operator (ISO)

Transmission

Transmission
Owner-Operator

Reliability Wholesale System
Coordinator Market Operator
system load . power
forecast unit commitment
dispatch & reserves
Generator
DA & RT
market clearing
Wholesale Market
Weather weather - Generator
Forecaster forecast Day Ahead Real-Time Owner-Operator
Market Market price-quantity bids
7 DA & RT market clearing power
DA LMP RTLMP
market clearing market clearing
DA load forecast RT load forecast
Distribution System Operator (DSO) W

Load Serving Retail Market Distribution System Distribution
Entity (LSE) Operator Owner-Operator J Substation

Fig. 3.50: Overview of the wholesale market architecture in the DSO+T study.

time), the DSO adjusts these prices to cover their fixed and non-energy marginal costs and communicates these to the
market participants. Non-participating customers payed a flat rate that was calculated offline prior to the simulation.

Further details on the market and transactive system design can be found in DSO+T: Transactive Energy Coordination
Framework DSO+T Study: Volume 3.

Transmission System Model

A simplified 8-bus transmission model was used for the analysis, as shown in Figure Fig. 3.52. A higher-fidelity 200-
bus model was used to validate the 8-bus model with similar results. Both models used the same generation fleet where
the location of the generators in the 200-bus model were modified to fit the locations available in the 8-bus model. For
the high-renewables scenario the existing thermal fleet was maintained while the wind generation capacity was doubled
to 32.6 GW, 14.8 GW of utility-scale solar and 21.3 GW of rooftop solar were added (though the rooftop-solar was
implemented in the distribution system models). The generation mix for both scenarios are shown in Table 3.7.

Table 3.7: ERCOT Generation Mix Modeled in DSO+T

Generation Type Generation Capacity (MW)

Coal 21,900

Natural gas combined cycle 40,100

Natural gas internal combustion engine 1,800

Natural gas steam turbine 13,000

Nuclear 5,100

Wind (MR/HR) 16,300/32,600

Solar (utility scale, HR only) 14,800

Solar (distributed, MR only) 21,300 Total (MR/HR) 98,300/150,600

Further details on the transmission system modeling can be found in Sections 2 and 3 of the DSO+T: Integrated System

112 Chapter 3. TESP Demonstrations and Examples

https://doi.org/10.2172/1842489
https://doi.org/10.2172/1842489
https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842488

TESP Documentation, Release 1.0

Wholesale Market

Day Ahead]

Market

Real-Time
Market

DA load forecast RT load forecast

Distribution System Operator (DSQ)

Distribution

Load Serving
Entity (LSE)

Retail Market Distribution System 1 W delivery constraints
Operator Owner-Operator J J

price forecas price-quantity bids
price-quantity bids

RT market clearing
DA market clearing

\ Retail Mb?s&

Day Ahead
Market

T

DA & RT
load forecast

Real-Time
Market

price forecast
price-quantity bids

price-quantity bids
DA market clearing

RT market clearing

Customer

System

power

!

Participating
Customer
=T

price-quantity bids
market clearing

Non-Participating
Customer
T

load forecast

load forecast

\ Asset

Asset Agent
Non-Responsive Responsive
Asset Asset

Asset Model

Sit

.
|

5-minute energy
readings

Meter

Fig. 3.51: Overview of the retail market architecture in the DSO+T study

3.2. TESP Example Analysis

113

https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842488

TESP Documentation, Release 1.0

Fig. 3.52: Topology of the simplified 8-bus bulk power system model utilized.

114 Chapter 3. TESP Demonstrations and Examples

https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842488

TESP Documentation, Release 1.0

Simulation DSO+T Study: Volume 2

Distribution System Models

The prototypical feeder models (Github feeder repository, feeder development report) were used as the basis of the
distribution system models in DSO+T. Each transmission node with load defined in the transmission system model
had one to three of these models combined with a single common substation. These models had their static ZIP loads
converted to GridLAB-D house objects to model residential and commercial buildings (less than 30,000 square feet).
(Industrial loads were modeled as a constant load directly attached to the transmission system bus.) Extensive literature
review was done to help define building and occupant parameters for the models such as building envelope parameters,
thermal mass, plug loads and internal gain schedules, HVAC schedules, and water heater types and setpoints.

For the customers participating in the transactive system the HVAC systems, electric water heaters, and EV charging
were modeled as the participating loads as these are the highest-power loads. Some of the scenarios also included
batteries which, when present, participated in the transactive system. In the high-renewables scenarios some customers
had rooftop solar which did not participate as a generator in the transactive system but whose output was considered
when estimating the power required by each participant.

Each GridLAB-D model at a given transmission bus used a corresponding TMY3 weather file, resulting in some
distribution systems being summer-peaking and some being winter-peaking. The solar production data was calculated
using the National Solar Radiation Database.

Figures Fig. 3.53 and Fig. 3.54 show the results for a representative weeks with maximum and minimum load. The gray
dashed line shows the actual historic load as measured by ERCOT and the solid black line shows the total simulated
load. (The gap between the itemized color load and the black total system load represents system losses.) Though not
perfect, the correlation is reasonable and shows that the loads being modeled in the distribution system are generally
capturing the behavior of the customer’s they represent.

80000
70000 2
\ \ (i
\ (l
60000 \‘ i f
1] \ 1 ‘\ ’l
< 50000 ‘ ‘\‘] \!])
; \ / \ \ \ \\ ,, o
E \\.’ N \, ; \‘
40000 .)
o | \ \
© \ \ A \ \ \ \
9 30000{ —— Total Simulation Load \ \ \
---ERCOT Load
20000 M Industrial Loads
Plug Loads
10000 HVAC Loads
I WH Loads

%016-08-08 2016-08-09 2016-08-10 2016-08-11 2016-08-12 2016-08-13 2016-08-14 2016-08-15
Time

Fig. 3.53: Modeled and historical peak load for ERCOT

3.2. TESP Example Analysis 115

https://doi.org/10.2172/1842488
https://doi.org/10.2172/1842488
https://github.com/gridlab-d/Taxonomy_Feeders
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-18035.pdf
https://nsrdb.nrel.gov

TESP Documentation, Release 1.0

80000

—— Total Simulation Load
70000{ --- ERCOT Load
B Industrial Loads
600007 = Plug Loads
HVAC Loads
’;‘ 500007 mmm

WH Loads

— 40000

o]

9 30000
20000

10000

%016-04—01 2016-04-02 2016-04-03 2016-04-04 2016-04-05 2016-04-06 2016-04-07 2016-04-08
Time

Fig. 3.54: Modeled and historical minimum load for ERCOT

Running DSO+T Example

Due to the scope and scale of the analysis, the DSO+T analysis typically takes several days to simulate a whole month.
Setting the simulation duration to a single week will reduce the simulation time to 12-24 hours though the built-in
post-processing scripts called by ‘postprocess.sh’ will not function properly.

Start by downloading supporting data that is not stored in the repository due to its size and static nature. This
will add a “data” folder alongside the existing “code” folder from the repository. .. code-block:: sh cd
~/grid/tesp/examples/analysis/dsot/code ./dsotData.sh

Open up “8_system_case_config.json” and confirm/change the following parameters: .. code-block:: sh “StartTime”:
“2016-08-01 00:00:00” “EndTime”: “2016-08-31 00:00:00” “Tmax”:<calculate number of seconds in above defined
start time> “caseName”: <arbitrary name> “dsoPopulationFile”: “8-metadata-lean.json”

* prepare_case_dsot.py - pre-defined cases are shown; these are the ones used for DSO+T -creates directory in
“Code”

e postprocess.sh

Results

Below are a sample of the standard plots that are created using the built-in post-processing scripts for this case. These
scripts are designed to work on one calendar month of data though the simulation can be configured to run on much
shorter periods of time; to process those results custom post-processing scripts will need to be created.

116 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

——. ERCOT Load
70000 { —— Total Load
Nuclear
mm Coal
60000 Gas (cc)
Gas (CT)
g mm \Wind
50000 Solar
=
c
O 40000
2
©
_
@
C 30000
[}
(G)
20000
10000
2016-08-01 2016-08-05 2016-08-09 2016-08-13 2016-08-17 2016-08-21 2016-08-25 2016-08-29 2016-09-01
Time
ig. 3.55: Fuel sou u WET SYs i ugust.
Fig. 3.55: Fuel source for bulk power system generation for the month of August
70000{ ——- ERCOT Load R
—— Total Load * # noyon i a
\ ,I PO] n n 1 \]
Nuclear l,l| N ll .
60000 | mmm Coal ‘||||‘|||: noho
n
Gas(cor R NI M ML LR R R L onq i
Gas(CT)|||||'|||1 ‘|l|||'|="|“
2~ 50000 mmm Wind :'.‘I:l' | ||'l|'|\\ |
= sol 1R Al R THINY 4 rRLITAARRNE N
= ity i JUELEN BB | AL AL W
1-Ldi Ll T . 1 W [! 1gh
= 1 TRTIRTRIRINT AT Al WAL
c 40000 i d 1 ‘ 'EL | |
() ~ [l ! ! 1| I
2 ! U }
©
—
@ 30000
C
@
(G)
20000
10000
2016-08-01 2016-08-05 2016-08-09 2016-08-13 2016-08-17 2016-08-21 2016-08-25 2016-08-29 2016-09-01
Time

Fig. 3.56: Fuel source for bulk power system generation for the month of August when batteries are installed in the

distribution system and participate in a transactive system.

3.2. TESP Example Analysis

117

TESP Documentation, Release 1.0

Comparisons of DSO Quantities: Day08-01

DSO Market RT Q

DSO DA Retail Q

DSO RT Retail

DSO RT Retail Q (Unadjusted)
Actual Substation+ind. Power

SERRER

[SIe E— RS L — 200 T Ds03 w00 D504 hoeared @
ax
24000 20000
22000 6000
600
18000
__ 20000 1 _ | 3500
H H =
£ 18000 2 16000 £ 50 |E 5000
z o z 2 4500
g 1o % 14000 g H
5 3 5
© 14000 O 400 | 4000
12000 12000 3500
300
3000
10000 10000
8000 2500
DSO 5 DSO 6 Dso 8
12000 ssessssassansssrsssssinssacassnssasinsuassssasasen s00d R 215
11000 7000 250
10000 00 225
s] = 6000 s
2 9000 H s £ 200
= = 600 = =
£ s000 g z Z s
§ %% 5
& 7000 & 500 54 3 150
6000 4000 125
5000 #o0 100
3000 75
PN S O I R A [N I R R R R AP L I P I R L AP 10 (O (P (N0 (AP (D O
@»\@m\qﬁx\cﬁ»\@»\@»\@»\@n\Qh,bi Qh,b‘@,b\qﬁ,b‘»05,6\@,0\@,b\@,b\qﬁ,b‘»@,ﬂ @»‘\@n\@»\@»\Qh,o‘r@,b‘@,b\@»\ o 05,6\0&,0\@»\@,b\@.b\@»‘\cﬁ,e\@_b\@,&
Time Time Time Time

Fig. 3.57: Quantity of energy purchased by each of the eight modeled DSOs in the month of August in the base case.

" e —— DSO Market RT Q
Comparisons of DSO Quantities: Day08-01 DSO DA Retail Q
—— DSO RT Retail Q
—— DSO RT Retail Q (Unadjusted)
—— Actual Substation+Ind. Power
S 16— IS :1C I SE— D503 D504 T DAclearedQ
24000 700 6500 < QMax
20000
650
22000 6000
600
S 20000 4 18000 s 5 5500
2 3 = £ s000
z 18000 £ 16000 £ 500 2
2 2 2
H 5 © 4500
£ 16000 3 450 5
14000
14000 200 4000
350 3500
12000 12000
300 3000
DSO 5 DSO 6 DSO 7 DSO 8
12000 800 JEE 7500 ars{
11000 750 7000 250
700
_ 16000 _ | 6500 s
2 2 = H
2z s 650 = 6000 Z 200
9000
g g 600 g 5500 g
% 5000 5 5 g
o O 550 (s o
5000 150
7000 500
4500 125
450
6000
4000 100

[CHRE I SR N SRS N A] [N NI SR IR IR A\ SRR O I B RN S N A]
@_e\@,e\@,e\Qh,e\@,e\@,e\@,c\gwo\Qﬁ,e’l Qﬁ,e\@,e\@,e\Qs,e\gwo\Qﬁ,e\@,e\@,e\@,e‘ﬁ Qb,e\Gﬁ,o\@_e\@»\Qﬁ,e\oh,e\@,e\@,e\@,01
Time Time Time

S I I I NIRRT S
05,0\Qﬁn\Qﬁ,e\Q,b,e\@.e‘»;’we\:wo\;’we\:we’t

Time

Fig. 3.58: Quantity of energy purchased by each of the eight modeled DSOs in the month of August when batteries are

installed in the distribution system and participate in a transactive system.

118

Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

DSO+T Agent Bidding and Sliders

This document seeks to capture all the ways that we’ve modeled the interation of agents and slider settings in the DSO+T
work. Specifically, we’re concerned how the slider setting impacts customer flexibility. As part of this, a brief overview
of the four-point bidding formulation used in DSO+T will also be discussed followed by a summary of the actual code
implemented to allow the impact on slider settings.

The “slider” is the co-efficient of flexibility (between 0 and 1, inclusive) that is used to define how sensitive a customer
or device agent (controller) is price. Generally:

¢ slider = 1 - Maximum flexibility, prioritizes cost over comfort
¢ slider = 0 - Minimum flexibility, prioritizes comfort over cost

In the DSO+T analysis, slider settings were randomly assigned to each customer and all participating devices (e.g.
HVACs, EV Chargers) inherited that slider setting.

DSO+T Four-Point Bidding

As covered well in the DSO+T Transactive Mechanism report, all the agents participating in the market created a “four-
point bid”; that is, a bid consisting of four price-quantity pairs (eight values in total) that were able to be interpretted
to comprehensively define their price-responsiveness. Two of these points define the price-quantity limits for the bid.
A convention was established to interpret the bid curve beyond these points; prices lower than Pmin have a quantity
capped at Qmax and prices higher than Pmax have a quantity of Qmin. Qmin is generally zero for flexible loads but
may be a negative value for EVs and batteries as they are able to supply energy.

The central two points in the four-point bid are used to define a deadband in the price-responsiveness; cleared prices
within this band will not adjust the cleared quantity and thus the operating state of the device. This deadband is helpful
in reaching convergence over multiple bidding periods in the iterative retail day-ahead market. This deadband may
have a slight slope to it.

CurveSlope

CurveSlope is used by most agents to define their price responsiveness (along with the slider setting). Generally,
CurveSlope is the ratio of the change in price (real-time or day-ahead) and the over the power consumption of the load;
this ratio is then divided by the slider setting. Dividing by the slider setting affects the slope of the price responsiveness
with lower values (those prioritizing comfort over cost) increasing the slope resulting in two impacts:

1. Greater sensitivity to price - the quantity of the energy bid changes more significantly as a function of price.
Smaller changes in prices will produce larger changes in bid quantity.

2. Smaller price-responsive price range - Decreating the slider increases the value of CurveSlope and pulls
Pmin and Pmax closer to a central value, putting more bid quantities at Qmax or Qmin, respectively. (Qmin
is generally zero for flexible loads but may be a negative value for EVs and batteries as they are able to supply
energy.)

3.2. TESP Example Analysis 119

https://www.osti.gov/biblio/1842489

TESP Documentation, Release 1.0

Pupper deadband

Price (P)

P ower deadband

PI’I‘II"I *

R

Cimin
Cloptima Cmax

Quantity (Q)

Fig. 3.59: Generic load four-point bid; loads are never able to have a negative bid quantity as they only consume
electrical energy.

120 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Price (P)

Pupper deadband

F ower deadband

F,l’l‘ll"l

I I

I R I R)

o ow o

<

Clmim

>
@rm - Quantity (Q) G

Fig. 3.60: Generic battery or EV (V2G) four-point bid with negative bid quantities as they are able to supply electrical

energy.

3.2. TESP Example Analysis

121

TESP Documentation, Release 1.0

P'TIELJ&

POA optimal feeeesnnnnnnnnnnnmnnafiensnnssssssnssss

Pmm

slider = low

Price (P)

Pmlpl ¥ L I

8 % & 0 8 8 % 8 8 F S EEEEEE

Qpa_ optimal

Quantity (Q)

Fig. 3.61: Impact of adjusting the slider setting on the CurveSlope and corresponding four-point bid points.

122 Chapter 3. TESP Demonstrations and Examples

TESP Documentation, Release 1.0

Converting Between Bid Quantity and Device Amenity Setting

For the HVAC and water heaters, once informed of a cleared price the device needs to convert this into an amenity
setting: a thermostat setpoint. (For batteries and EVs, the amenity is charging or discharging power and thus the
cleared quantity can be used to directly set these values.) Directly from the report

Using the retail real-time market-cleared price and the asset agent’s bid curve, the HVAC’s cleared quantity
is extracted. To convert the cleared quantity into a temperature setpoint, an HVAC energy quantity versus
temperature setpoint mapping curve is needed.

8

;
$ 6
S E
B E 5-
=R .
7 ¢ | Cleared quantity \
S = :
© 3 £
O g 3 B
< = e
2 = 2!
=&, 21 -
S
1- S|
E
0 =
7650 7675 77.00 7725 7150 7175

Set-point temperature (F)

78.00

Fig. 3.62: Example of the translation of cleared quantity to a thermostat setpoint performed by the HVAC agent.

3.2. TESP Example Analysis

123

https://www.osti.gov/biblio/1842489

TESP Documentation, Release 1.0

Agent Implementations

For each of the agents used in the DSO+T study, a section below outlines where the slider setting is used in the agent
code

EV Agent

DSO+T EV agent code is found on Github.

* Sets the required departure-from-home charge:

[self.home_depart_soc = self.Cmax + (just_enough_soc - self.Cmax) * self.slider]

 Contributes to the objective function used in forming the DA bids (optimization problem):

(return sum(

self.slider * self.f_DA[i] * (m.E_DA_out[i] - m.E_DA_in[i])

- self.slider * self.batterylLifeDegFactor * (1 + self.profit_margin) *.
—(m.E_DA_out[i] + m.E_DA_in[i])

- self.quad_fac * (m.E_DA_out[i] + m.E_DA_in[i]) ** 2 for i in self.
—TIME)

- sum((1 - self.slider) * 0.001 * (self.home_depart_soc - m.C[i]).

—for i in self.trans_hours)

.

* Determines the price-responsiveness (slope) when formulating real-time bids:

CurveSlope = ((max(self.f DA) - min(self.f DA)) / (-self.Rd - self.Rc)) / self.
—slider

Battery Agent

DSO+T Battery agent code is found on Github.

* Determines the price-responsiveness (slope) when formulating day-ahead bids

(Curve51ope[t] = ((max(self.f_DA) - min(self.f_DA)) / (-self.Rd - self.Rc)) / self.
—slider

.

Determines the price-responsiveness (slope) when formulating the real-time bids:

(Curve51ope = ((max(self.f_DA) - min(self.f_DA)) / (-self.Rd - self.Rc)) / self.
—slider

.

124 Chapter 3. TESP Demonstrations and Examples

https://github.com/pnnl/tesp/blob/main/src/tesp_support/tesp_support/dsot/ev_agent.py
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/ev_agent.py#L125
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/ev_agent.py#L352
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/ev_agent.py#L505
https://github.com/pnnl/tesp/blob/main/src/tesp_support/tesp_support/dsot/battery_agent.py
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/battery_agent.py#L259
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/battery_agent.py#L381

TESP Documentation, Release 1.0

HVAC Agent

DSO+T HVAC agent code is found on Github.
The slider setting for the agent is used in the following ways in the agent code:

* Initializing the ProfitMargin_slope:

[self.ProfitMargin_slope = delta_DA_price / (Qmin - Qmax) / self.slider }

which is used in formulating the real-time bid:

[CurveSlope = (delta_DA_price / (0 - self.hvac_kw) * (1 + self.ProfitMargin_slope / 100))]

and the day-ahead bid:

—100))

CurveSlope[t] = (delta_DA_price / (0 - self.hvac_kw) * (1 + self.ProfitMargin_slope /. ’

Water Heater Agent

DSO+T water heater agent code is found on Github.

* Determines the price-responsiveness (slope) when formulating day-ahead bids:

[CurveSlope[t] — delta_DA_price / ((0 - self.Phw) * self.slider)]

3.2.3 Indices and tables

* genindex
* modindex

e search

3.2.4 Consensus-based Transactive Communities - Example and Documents

This section links to models and design documents for a Consensus-based Transactive Communities use-case that
PNNL has been developing as part of the HELICS+ use-cases (4.1) in FY21. Most of this material will be incorporated
into the main TESP documentation as the described models and agents are fully integrated with the platform. No
technical support can be provided for material referenced from this section, outside of the DSO+T study team.

3.2. TESP Example Analysis 125

https://github.com/pnnl/tesp/blob/main/src/tesp_support/tesp_support/dsot/hvac_agent.py
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/hvac_agent.py#L320
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/hvac_agent.py#L1620C14-L1620C101
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/hvac_agent.py#L1753
https://github.com/pnnl/tesp/blob/main/src/tesp_support/tesp_support/dsot/water_heater_agent.py
https://github.com/pnnl/tesp/blob/1dcd35e58124764504f4ccb4f38d2f784e0e066e/src/tesp_support/tesp_support/dsot/water_heater_agent.py#L517

TESP Documentation, Release 1.0

126 Chapter 3. TESP Demonstrations and Examples

CHAPTER
FOUR

DEVELOPING AND CUSTOMIZING TESP

4.1 Introduction

Though TESP comes with a collection of capability demonstrations and analysis examples, it exists to smooth the path
forward for evaluation of all kinds of transactive energy analysis. We hope users of TESP will not only delve into the
aforementioned demonstrations and examples but also seek to customize and expand TESP to their meet their own
analysis and research needs. To that end, the goal of this section is to provide the supporting documentation necessary
to not only understand TESP as a whole in significant detail but also deconstruct it sufficiently that it is clear to those
designing new transactive analysis which pieces can most easily be used.

4.1.1 Standard Third-Party Tools

TESP, as a platform, is largely dependent on third-party simulation tools to perform the kinds of analysis that are
common in transactive energy scenarios. The tools summarized on this page are those that have been commonly used
in TESP and are considered somewhat “standard” when using TESP. This obviously doesn’t preclude the use of other
simulation tools but the installation and integration of said tool will fall on the user. When applicable and appropriate,
the source code (along with the compiled executable) for these tools is provided with a complete TESP installation and
when not, the just the executables are included. By providing access to the source and linking to their repositories,
users should be able to not only customize the tools in their installations but also update their code from the repository
to receive bug fixes and/or feature updates. The following is a brief description of each of the tools; much more
comprehensive documentation for each can be found on their respective websites.

GridLAB-D

GridLAB-D is a power distribution system simulation tool that not only solves three-phase unbalanced power flows (as
is common in distribution system tools) but also includes simple thermodynamic models for houses including HVAC
systems and water heaters. The inclusion of the multi-domain models allows the tool to model an integrated distribution
system (wires and loads) and represent a wider variety of common transactive energy scenarios. GridLAB-D also
include models for solar PV installations with inverters, automated voltage management equipment (voltage regulators
and switched capacitors), and diesel generators. TESP uses GridLAB-D to model distribution system physics and
customer load behavior.

127

TESP Documentation, Release 1.0

PYPOWER

PYPOWER is a Python re-implementation of MATPOWER in Python using common Python libraries to perform the
mathematical heavy lifting. TESP uses PYPOWER to solve the real-time energy market dispatch (through an optimal
power flow) and the transmission system physics (through traditional power flows).

PSST

Power system solver that provides an alternative formulation and implementation for solving day-ahead security-
constrained unit commitment (SCUC) and real-time security-constrained economic dispatch (SCED) problems.

EnergyPlus

EnergyPlus is a building system simulator that is typically used to model large (at least relative to residential buildings),
multi-zone commercial buildings. These models include representations of both the physical components/structures of
the buildings (e.g. walls, windows, roofs) but also heating and cooling equipment as well as their associated controllers.
TESP uses EnergyPlus to model commercial structures and associate them with particular points in the GridLAB-D
model.

ns-3

ns-3 is a discrete-event communication system simulator that TESP uses to model communication system effects be-
tween the various agents in a transactive system. ns-3 has built-in models to present common protocol stacks (TCP/IP,
UDP/IP), wireless protocols such as Wifi (802.11) and LTE networks, as well as various routing protocols (e.g. OLSR,
AODV).

HELICS

HELICS is a co-simulation platform that is used to integrate all of the above tools along with the custom agents created
by the TESP team and distributed with TESP. HELICS allows the passing of physical values or abstract messages
between the TESP simulation tools during run-time allowing each simulation tool to affect the others. For example,
PYPOWER produces a substation voltage for GridLAB-D and GridLAB-D, using that voltage, produces a load for
PYPOWER.

Ipopt

Quoting from it’s website, ‘“Ipopt (Interior Point Optimizer, pronounced “Eye-Pea-Opt”) is an open source software
package for large-scale nonlinear optimization.” Ipopt can be used by any other software in TESP that performs op-
timization problems, most typically in solving multi-period optimization problems such as in solving the day-ahead
energy market or devices creating day-ahead bids for participating in said markets. Ipopt is built with Ampl Solver
Library (ASL) and and MUMPS support.

128 Chapter 4. Developing and Customizing TESP

https://matpower.org

TESP Documentation, Release 1.0

Python Packages

There are many Python packages used but a few of the major ones not already listed deserve mention:

Matplotlib - data visualization library used for presenting results out of TESP
NumPy - data management library used for structuring results data for post-processing
pandas - data management library used for structuring results data for post-processing

HDFS5 - Database-like data format used for storing results from some simulation tools and used to read in said
data for post-processing

seaborn - data visualization library used for presenting results out of TESP

Pyomo - optimization modeling language used to formulate some of the multi-period optimizations common in
TESP

Networkx - graph modeling package used to analyze some of the relational graphs and/or models of the power
and communication network in TESP

4.1.

Introduction 129

https://matplotlib.org
https://numpy.org
https://pandas.pydata.org
https://www.h5py.org
https://seaborn.pydata.org
https://www.pyomo.org
https://networkx.org

TESP Documentation, Release 1.0

130 Chapter 4. Developing and Customizing TESP

CHAPTER
FIVE

REFERENCES

References for TESP

5.1 Design Reference

5.1.1 Messages between Simulators and Agents

TESP simulators exchange the sets of messages shown in Fig. 5.1 and Fig. 5.2.

These messages route through HELICS in a format like “topic/keyword=value”. In Fig. 5.3, the “id” would refer
to a specific feeder, house, market, or building, and it would be the message topic. Once published via HELICS,
any other HELICS simulator can access the value by subscription. For example, PYPOWER publishes two values, the
locational marginal price (LMP) at a substation bus and the positive sequence three-phase voltage at the bus. GridLAB-
D subscribes to the voltage, using it to update the power flow solution. The double-auction for that substation subscribes
to the LMP, using it to represent a seller in the next market clearing interval. In turn, GridLAB-D publishes a distribution
load value at the substation following each significantly different power flow solution; PYPOWER subscribes to that
value for its next optimal power flow solution.

EnergyPlus publishes three phase power values after each of its solutions (currently on five-minute intervals). These
are all numerically equal, at one third of the total building power that includes lights, office equipment, refrigeration
and HVAC loads. GridLAB-D subscribes in order to update its power flow model at the point of interconnection
for the building, which is typically at a 480-V or 208-V three-phase transformer. EnergyPlus also subscribes to the
double-auction market’s published clearing price, using that value for a real-time price (RTP) response of its HVAC
load.

Message flows involving the thermostat controller, at the center of Fig. 5.3, are a little more involved. From the as-
sociated house within GridLAB-D, it subscribes to the air temperature, HVAC power state, and the HVAC power if
turned on. The controller uses this information to help formulate a bid for electric power at the next market clearing,
primarily the price and quantity. Note that each market clearing interval will have its own market id, and that re-bidding
may be allowed until that particular market id closes. When bidding closes for a market interval, the double-auction
market will settle all bids and publish several values, primarily the clearing price. The house thermostat controllers
use that clearing price subscription, compared to their bid price, to adjust the HVAC thermostat setpoint. As noted
above, the EnergyPlus building also uses the clearing price to determine how much to adjust its thermostat setting.
Fig. 5.3 shows several other keyword values published by the double-auction market and thermostat controllers; these
are mainly used to define “ramps” for the controller bidding strategies. See the GridLAB-D documentation, or TESP
design documentation, for more details.

These message schemas are limited to the minimum necessary to operate Version 1, and it’s expected that the schema
will expand as new TEAgents are added. Beyond that, note that any of the simulators may subscribe to any values that
it “knows about”, i.e., there are no security and access control emulations. This may be a layer outside the scope of
TESP. However, there is also no provision for enforcement of bid compliance, i.e. perfect compliance is built into the
code. That’s clearly not a realistic assumption, and is within the scope for future versions as described in Section 3.

131

TESP Documentation, Release 1.0

class MessageClasses /

‘ AuctionTopicsEplusAgent ‘

AuctionTopicsHVACAgent AuctionTopicsPYPOWER
+ id/clear price: float + id/clear price: float ‘ + id/unresponsive_mw: float
+ id/responsive_max_mw: float
+ id/responsive cl: float
]] + id/responsive c2: float
HVACAgentTopicsAuction + id/responsive_deg: float
+ id/bid_price: float
+ id/hvac_kw: float
+ id/hvac_on: boolean PYPOWERTopicsAuction ‘
+ id/LMP: float
GLDTopicsHVACAgent ‘ ‘ GLDTopicsAuction ‘ GLDTopicsPYPOWER
+ id/house*/air_temperature: float + id/distribution_load: float + id/distribution_load: float
+ id/house*/hvac_load: float
+ id/house*/power_state: boolean
+ id/house*/measured voltage 1:float
PYPOWERTopicsGLD
HVACAgentTopicsGLD + id/three phase voltage: float
+ id/house*/cooling_setpoint: float
+ id/house*/heating setpoint: float
+ id/house*/thermostat deadband: float
+ id/house*/hill_mode: BillingModes
+ id/house*/price: float
+ id/house*/monthly fee: float
«enumerati...
Configuration::
FederatesToMonitor BillingModes
+ auction/clear_price: float UNIFORM
+ eplus_json/power_A: float HOURLY
+ eplus/WHOLE BUILDING FACILITY TOTAL ELECTRIC DEMAND POWER: float TIERED
+ gld/distribution_load: float TIERED_TOU
+ pypower/LMP: float TIERED_RTP
+ pypower/three phase voltage: float NONE

Fig. 5.1: Message Schemas for GridLAB-D, PYPOWER and residential agents

132

Chapter 5. References

TESP Documentation, Release 1.0

class EplusMessageClasses /

EplusTopicsEplusAgent

id/*PEOPLE PEOPLE OCCUPANT COUNT: int

id/EMS COOLING CONTROLLED LOAD: float

id/EMS COOLING CURRENT TEMPERATURE: float

id/EMS COOLING DESIRED TEMPERATURE: float

id/EMS COOLING POWER STATE: int

id/EMS HEATING CONTROLLED LOAD: float

id/EMS HEATING CURRENT TEMPERATURE: float

id/EMS HEATING DESIRED TEMPERATURE: float

id/EMS HEATING POWER STATE: int

id/FACILITY FACILTY THERMAL COMFORT ASHRAE 55 SIMPLE MODEL SUMMER OR WINTER CLOTHES NOT COMFORTABLE TIME: float
id/WHOLE BUILDING FACILITY TOTAL ELECTRIC DEMAND POWER: float

+ 4+ o+ + F o+ o+ o+

EplusAgentTopicsGLD «enumerati...
EplusAgentTopicsEplus Configuration::
+ id/bill_mode: BillingModes BillingModes
+ id/cooling setpoint delta: float + id/monthly fee: float
+ id/heating_setpoint_delta: float + id/power g float UNIFORM
+ id/power_B: float HOURLY
+ id/power C: float TIERED
+ id/price: float TIERED_TOU
TIERED_RTP
NONE

Fig. 5.2: Message Schemas for EnergyPlus and large-building agents

5.1.2 TESP for Agent Developers

The left-hand portion of Fig. 5.5 shows the main simulators running in TESP and communicating over HELICS. For
the DSO+T study, PYPOWER will be upgraded to AMES and EnergyPlus will be upgraded to a Modelica-based
large-building simulator. The large-building agent will also be updated. The current large-building agent is written
in C++. It’s functionality is to write metrics from EnergyPlus, and also to adjust a thermostat slider for the building.
However, it does not formulate bids for the building. The right-hand portion of Fig. 5.5 shows the other transactive
agents implemented in Python. These communicate directly via Python function calls, i.e., not over HELICS. There
are several new agents to implement for the DSO+T study, and this process will require four main tasks:

1 - Define the message schema for information exchange with GridLAB-D, AMES or other HELICS federates. The
SubstationAgent will actually manage the HELICS messages, i.e., the agent developer will not be writing HELICS
interface code.

2 - Design the agent initialization from metadata available in the GridLAB-D or other dictionaries, i.e., from the
dictionary JSON files.

3 - Design the metadata for any intermediate metrics that the agent should write (to JSON files) at each time step.

4 - Design and implement the agent code as a Python class within tesp_support. The SubstationAgent will instantiate
this agent class at runtime, and call the class as needed in a time step.

Fig. 5.6 the sequence of interactions between GridLAB-D, the SubstationAgent (encapsulating HVAC controllers and
a double-auction market) and PYPOWER. The message hops over HELICS each consume one time step. The es-
sential messages for market clearing are highlighted in red. Therefore, it takes 3 HELICS time steps to complete a
market clearing, from the collection of house air temperatures to the adjustment of thermostat setpoints. Without the
encapsulating SubstationAgent, two additional HELICS messages would be needed. The first would occur between
the self-messages AgentBids and Aggregate, routed between separate HVACController and Auction swimlanes. The

5.1. Design Reference 133

TESP Documentation, Release 1.0

sd MessageFlows

GLDTopicsPYPOWER

GridLAB-D

A

«flow»

7)

/' EplusAgent
EplusTopicsEplusAgent .

«flow» S
/ f/

r K
/

/EplusAgentTopicsEplus

«flow»
/

/
v
1
p
P

EnergyPlus

EplusAgentTopicsGLD

«flow»
PYPOWERTopicsGLD
~ «flow» o
. " PYPOWER
" PYPOWERTopicsAuction -
\\\ GLDTopicsAuction, GLDTopicsHVACAgent eplcs ! I?p
Y s «flow» /«flow» ,’/
HVACAgentTopicsGLD_ AuctionTopicsPYPOWER
«flow»\ \\‘ e «flow»
AuctionTopicsEplusAgent
uction fopicstplushgen SubstationAgent
«flow»
HVACAgent

7
7
,

/ ,

AuctionTopicsHVACAgent
aflown <
HVACAgentTopicsAuction

«flow»

Fig. 5.3:

Message Flows for Simulators and Transactive Agents

134

Chapter 5. References

TESP Documentation, Release 1.0

sd MonitorFlows

SubstationAgent EplusAgent

\

FederatesToMonitor
———————————————————— ==

«flow»

PYPOWER /TESPFederates TESPMonitor

GridLAB-D
EnergyPlus

Fig. 5.4: Message Flows for Solution Monitoring

composite structure TESPComposition /

tesp_support Python Package

BulkSystemSimulator

SubstationAgent
1
HVACAgent
0“*
FNCS
0“* ‘SEEEE—]
Legend PrecoolAgent
BuildingAgent 1 0. [—
D To Implement
D To Upgrade 1
DayAheadMarket BatteryAgent
FNCS 0.*
— FNCS Messages 1
— Python Calls
v BuildingSimulator 0. WaterHeaterAgent

Fig. 5.5: Composition of Federates in a Running TESP Simulation

5.1. Design Reference 135

TESP Documentation, Release 1.0

second would occur between ClearMarket and AdjustSetpoints messages, also routed between separate Auction and
HVACController swimlanes. This architecture would produce additional HELICS message traffic, and also increase
the market clearing latency from 3 HELICS time steps to 5 HELICS time steps.

Before and after each market clearing, GridLAB-D and PYPOWER will typically exchange substation load and bus
voltage values several times, for each power flow (PF) solution. These HELICS messages are indicated in black; they
represent much less traffic than the market clearing messages.

Some typical default time steps are:
1 - 5 seconds, for HELICS, leading to a market clearing latency of 15 seconds
2 - 15 seconds, for GridLAB-D and PYPOWER’s regular power flow (PF)

3 - 300 seconds, for spot-market clearing, PYPOWER’s optimal power flow (OPF), EnergyPlus (not shown in Fig. 5.6)
and the metrics aggregation.

5.1.3 Output Metrics to Support Evaluation

TESP will produce various outputs that support comparative evaluation of different scenarios. Many of these outputs
are non-monetary, so a user will have to apply different weighting and aggregation methods to complete the evaluations.
This is done in the Evaluation Script, which is written in Python. These TESP outputs all come from the Operational
Model, or from the Growth Model applied to the Operational Model. For efficiency, each simulator writes interme-
diate metrics to Javascript Object Notation (JSON) files during the simulation, as shown in Figure 5. For example, if
GridLAB-D simulates a three-phase commercial load at 10-second time steps, the voltage metrics output would only
include the minimum, maximum, mean and median voltage over all three phases, and over a metrics aggregation in-
terval of 5 to 60 minutes. This saves considerable disk space and processing time over the handling of multiple CSV
files. Python, and other languages, have library functions optimized to quickly load JSON files.

To support these intermediate metrics, two new classes were added to the “tape” module of GridLAB-D, as shown
in Fig. 5.8. The volume and variety of metrics generated from GridLAB-D is currently the highest among simulators
within TESP, so it was especially important here to provide outputs that take less time and space than CSV files. Most
of the outputs come from billing meters, either single-phase triplex meters that serve houses, or three-phase meters
that serve commercial loads. The power, voltage and billing revenue outputs are linked to these meters, of which there
may be several thousand on a feeder. Houses, which always connect to triplex meters, provide the air temperature and
setpoint deviation outputs for evaluating occupant comfort. Inverters, which always connect to meters, provide real and
reactive power flow outputs for connected solar panels, battery storage, and future DER like vehicle chargers. Note that
inverters may be separately metered from a house or commercial building, or combined on the same meter as in net
metering. Feeder-level metrics, primarily the real and reactive losses, are also collected by a fourth class that iterates
over all transformers and lines in the model; this substation-level class has just one instance not shown in Fig. 5.8. An
hourly metrics output interval is shown, but this is adjustable.

The initial GridLAB-D metrics are detailed in five UML diagrams, so we begin the UML metric descriptions with
PYPOWER, which is much simpler. During each simulation, PYPOWER will produce two JSON files, one for all
of the generators and another for all of the HELICS interface buses to GridLAB-D. A third JSON file, called the
dictionary, is produced before the simulation starts from the PYPOWER case input file. The dictionary serves as an
aid to post-processing. Fig. 5.9 shows the schema for all three PYPOWER metrics files.

The PYPOWER dictionary (top of Fig. 5.9) includes the system MVA base (typically 100) and GridLAB-D feeder
amplification factor. The amplification factor is used to scale up the load from one simulated GridLAB-D feeder to
represent many similar feeders connected to the same PYPOWER bus. Each generator has a bus number (more than
one generator can be at a bus), power rating, cost function f{(P)=cog+c;P+c, P 2 startup cost, shutdown cost, and
other descriptive information. Each DSOBus has nominal P and Q that PYPOWER can vary outside of GridLAB-D,
plus the name of a GridLAB-D substation that provides additional load at the bus. In total, the PYPOWER dictionary
contains four JSON objects; the ampFactor, the baseMVA, a dictionary (map) of Generators keyed on the generator
id, and a dictionary (map) of DSOBuses keyed on the bus id. In PYPOWER, all id values are integers, but the other
simulators use string ids.

136 Chapter 5. References

TESP Documentation, Release 1.0

sd ClearingSequence /

GridLAB-D

Substatio

nAgent PYPOWER

FNCS(SubstationLoad)

FNCS(Bus Voltage)

i

FNCS(Temperature, Voltage, HVAC Power, HVAC State)
-

FNCS(Setpoint, Price)

i AgentBids()
; Aggregate()

FNCS(AggregatedBid)

e

ClearMarket()
C ;

FNCS(LMP)

7

; AdjustSetpoints()

FNCS(DistributionLoad)

FNCS(BusVoltage)

[y

s e

B/ |

PF()

OPF()

PF()

Fig. 5.6: HELICS Message Hops around Market Clearing Time

5.1. Design Reference

137

TESP Documentation, Release 1.0

FNCS |
TESP t Messages t Messages t Messages
PYPOWER EnergyPlus GridLAB-D
Base metrics Base metrics Base metrics
Study case calculator calculator calculator
and T

configuration

Post-processing

Additional

Base metrics and dictionaries (in JSON format)

Post-simulation metrics

dictionariesfor
post-processing

't calculation using Python

Final
valuation
metrics

Fig. 5.7: Partitioning the valuation metrics between simulation and post-processing

JSON dictionary
of GridLAB-D 1Ds

5-80 min
mqlétrics
JSON metrics
file "

..

triplex_meter

OB | |

vil,p.ait)

GridLAB-D new Class
metrics_collector

+0

inverter

vi.p.ait)

GridLAB-D Simulation, dt=1t0 155

Fig. 5.8: New metrics collection classes for GridLAB-D

v
A

138

Chapter 5. References

TESP Documentation, Release 1.0

class PYPOWERMetrics)

FNCSBus

GLDsubstation: char
ampFactor: float
Pnom: float

Qnom: float

area: int

zone: int

+ + + + + +

BusMetrics

+ StartTime: char 1

1..*

‘ BusTime ‘

+ time: long ‘

BusRecord

id: int

PD: float

PQ: float
Vmag: float
Vmax: float
Vmin: float
Vang: float
LMP_P: float
LMP_Q: float

+ + + + + + + + o+

+FNCSBuses

+ unit:int
+ tout: long
+ tin:long

+UnitsOQut

#

MetadataRecord

+Metadata
+ id: char
1..%|+ index:int
+ units: char
+Metadata

SysMetrics

+Metadata

+ StartTime: char
1

1..%

SysTime

+ time: long

1
1.*

SysRecord

+ Ploss: float

+ converged: boolean

+BranchesOut | + tin: long

<3

BranchOut

+ branch:int
+ tout: long

+Generators

(1

1.%
(1

1"”4
‘ GenRecord ‘
+ Pgen: float
+ Qgen: float
+ LMP_P: float

Generator

+ o+ 4+ + o+ o+

bus: int

bustype: BusTypeEnum
gentype: GenTypeEnum
genfuel: FuelTypeEnum
Pnom: float

Pmax: float

c0: float

cl: float

c2: float

StartupCost: float
ShutdownCost: float

«enumeration»
BusTypeEnum

Pq
pv
swing

isolated

«enumerati...
FuelTypeEnum

gas
coal
nuclear
hydro
wind
solar
other

«enumeration»
GenTypeEnum

combinedcycle
other
simplecycle

Fig. 5.9: PYPOWER dictionary with generator and DSO bus metrics

5.1. Design Reference

139

TESP Documentation, Release 1.0

The GenMetrics file (center of Fig. 5.9) includes the simulation starting date, time and time zone as StartTime, which
should be the same in all metrics output files from that simulation. It also contains a dictionary (map) of three Meta-
dataRecords, which define the array index and units for each of the three generator metric output values. These are
the real power LMP, along with the actual real and reactive power outputs, Pgen and Qgen. At each time for metrics
output, a GenTime dictionary (map) object will be written with key equal to the time in seconds from the simulation
StartTime, and the value being a dictionary (map) of GenRecords.

The GenRecord keys are generator numbers, which will match the dictionary. The GenRecord values are arrays of three
indexed output values, with indices and units matching the Metadata. This structure minimizes nesting in the JSON file,
and facilitates quick loading in a Python post-processor program. Valuation may require the use of both metrics and the
dictionary. For example, suppose we need the profit earned by a generator at a time 300 seconds after the simulation
starting time. The revenue comes from the metrics as LMP_P * Pgen. In order to find the cost, one would start with
cost function coefficients obtained from the dictionary for that generator, and substitute Pgen into that cost function.
In addition, the post processing script should add startup and shutdown costs based on Pgen transitions between zero
and non-zero values; PYPOWER itself does not handle startup and shutdown costs. Furthermore, aggregating across
generators and times would have to be done in post-processing, using built-in functions from Python’s NumPy package.
The repository includes an example of how to do this.

Turning to more complicated GridLAB-D metrics, Fig. 5.10 provides the dictionary. At the top level, it includes the
substation transformer size and the PYPOWER substation name for HELICS connection. There are four dictionaries
(maps) of component types, namely houses, inverters, billing meters and feeders. While real substations often have
more than one feeder, in this model only one feeder dictionary will exist, comprising all GridLAB-D components in
that model. The reason is that feeders are actually distinguished by their different circuit breakers or reclosers at the
feeder head, and GridLAB-D does not currently associate components to switches that way. In other words, there is one
feeder and one substation per GridLAB-D file in this version of TESP. When this restriction is lifted in a future version,
attributes like feeder_id, house_count and inverter_count will become helpful. At present, all feeder_id attributes will
have the same value, while house_count and inverter_count will simply be the length of their corresponding JSON
dictionary objects. Fig. 5.10 shows that a BillingMeter must have at least one House or Inverter with no upper limit,
otherwise it would not appear in the dictionary. The wh_gallons attribute can be used to flag a thermostat-controlled
electric waterheater, but these are not yet treated as responsive loads in Version 1. Other attributes like the inverter’s
rated_W and the house’s sgft could be useful in weighting some of the metric outputs.

Fig. 5.11 shows the structure of substation metrics output from GridLAB-D, consisting of real power and energy,
reactive power and energy, and losses from all distribution components in that model. As with PYPOWER metrics
files, the substation metrics JSON file contains the StartTime of the simulation, Metadata with array index and units
for each metric value, and a dictionary (map) of time records, keyed on the simulation time in seconds from StartTime.
Each time record contains a dictionary (map) of SubstationRecords, each of which contains an array of 18 values. This
structure, with minimal nesting of JSON objects, was designed to facilitate fast loading and navigation of arrays in
Python. The TESP code repository includes examples of working with metrics output in Python. Fig. 5.12 and Fig.
5.13 show how capacitor switching and regulator tap changing counts are captured as metrics.

Fig. 5.14 shows the structure of billing meter metrics, which is very similar to that of substation metrics, except that
each array contains 30 values. The billing meter metrics aggregate real and reactive power for any houses and inverters
connected to the meter, with several voltage magnitude and unbalance metrics. The interval bill is also included, based
on metered consumption and the tariff that was input to GridLAB-D. In some cases, revenues may be recalculated
in post-processing to explore different tariff designs. It’s also possible to re-calculate the billing determinants from
metrics that have been defined.

The Range A and Range B metrics in Fig. 5.14 refer to ANSI C84.1 [3]. For service voltages less than 600 V, Range A
is +/- 5% of nominal voltage for normal operation. Range B is -8.33% to +5.83% of nominal voltage for limited-extent
operation. Voltage unbalance is defined as the maximum deviation from average voltage, divided by average voltage,
among all phases present. For three-phase meters, the unbalance is based on line-to-line voltages, because that is how
motor voltage unbalance is evaluated. For triplex meters, unbalance is based on line-to-neutral voltages, because there
is only one line-to-line voltage. In Fig. 5.14, voltage_ refers to the line-to-neutral voltage, while voltagel2_ refers to
the line-to-line voltage. The below_10_percent voltage duration and count metrics indicate when the billing meter has
no voltage. That information would be used to calculate reliability indices in post-processing, with flexible weighting

140 Chapter 5. References

TESP Documentation, Release 1.0

class GLDDictionary /

Feeder

+ id: char
+ house count:int
+ inverter count:int

Capacitor

+ id: char
+ feeder_id: char

Regulator

+ id: char
+ feeder_id: char

+Capacitors

«enumeration»
CoolingEnum

ELECTRIC
HEAT_PUMP
NONE

«enumeration»
ResourceEnum

battery
solar

«enumeration»
HeatingEnum

RESISTANCE
HEAT_PUMP
NONE

GAS

GridLABDDictionary

+feeders

+Billingmeters
transformer_MVA: float

bulkpower_bus: char 1 1.*

FNCS: char

D“lk

+Regulators

+Inverters [0..

+Houses\ 0..*

BillingMeter
+ id: char
+ phases: MeterPhaseEnum
+ feeder id: char

+Children |1..*

MeterChild

A

/

House

id: char
billingmeter id: char
feeder id: char

sqft: float

stories: int

doors: int

cooling: CoolingEnum
heating: HeatingEnum
wh_gallons: float

L A T

thermal_integrity: ThermallntegrityEnum

*

Inverter

+ + + + + + + + +

rated_W: float
feeder_id: char
billingmeter_id: char
resource: ResourceEnum
id: char

inv_eta: float

bat eta: float
bat_capacity: float
bat_soc: float

«enumeration»
MeterPhaseEnum

AS
BS
Cs
ABC

Fig. 5.10: GridLAB-D dictionary

5.1. Design Reference

14

TESP Documentation, Release 1.0

and aggregation options by customer, owner, circuit, etc. These include the System Average Interruption Frequency
Index (SAIFI) and System Average Interruption Duration Index (SAIDI) [17, 18]. This voltage-based approach to
reliability indices works whether the outage resulted from a distribution, transmission, or bulk generation event. The
voltage-based metrics also support Momentary Average Interruption Frequency Index (MAIFI) for shorter duration
outages.

class SubstationMetrics /

SubstationRecord TimeRecord SubstationMetrics

real_energy: float
reactive_energy: float

real power avg: float

real power min: float
real power max: float
real_power_median: float
reactive_power_avg: float
reactive_power_min: float
reactive_power_max: float +Metadata | 1..*
reactive_power_median: float
real_power_losses_avg: float MetadataRecord
real power losses min: float
real power losses max: float + id: char
real power losses median: float + index:int
reactive_power_losses_avg: float + units: char
reactive_power_losses_min: float
reactive_power_losses_max: float
reactive_power_losses_median: float

+ time: long + StartTime: char
1

P T S S T T T T R TN R S S S

Fig. 5.11: GridLAB-D substation metrics

The house metric JSON file structure is shown in Fig. 5.15, following the same structure as the other GridLAB-D
metrics files, with 18 values in each array. These relate to the breakdown of total house load into HVAC and waterheater
components, which are both thermostat controlled. The house air temperature, and its deviation from the thermostat
setpoint, are also included. Note that the house bill would be included in billing meter metrics, not the house metrics.
Inverter metrics in Fig. 5.16 include 8 real and reactive power values in the array, so the connected resource outputs
can be disaggregated from the billing meter outputs, which always net the connected houses and inverters. In Version
1, the inverters will be net metered, or have their own meter, but they don’t have transactive agents yet.

Sample of resulting JSON:

{
"Metadata": {
"reactive_power_avg": {
"index": 5,
"units": "VAR"

1

"reactive_power_max": {
"index": 4,
"units": "VAR"

1,

"reactive_power_min": {

"index": 3,
"units": "VAR"

(continues on next page)

142 Chapter 5. References

TESP Documentation, Release 1.0

class CapacitorMetrics /

CapacitorRecord TimeRecord CapacitorMetrics

+ operation_count: int + time: long + StartTime: char

+Metadata |1..*

MetadataRecord

+ id: char
+ index:int
+ units: char

Fig. 5.12: GridLAB-D capacitor switching metrics

class RegulatorMetrics/

‘ RegulatorRecord TimeRecord RegulatorMetrics ‘

+ operation_count: int |1..* 1|+ time:long 1.* 1|+ StartTime: char ‘

1

+Metadata |1..*

MetadataRecord

+ id: char
+ index:int
+ units: char

Fig. 5.13: GridLAB-D regulator tap changing metrics

5.1. Design Reference 143

TESP Documentation, Release 1.0

class BillingMeterMetrics/

MetadataRecord
+Metadata

+ id: char
+ index: int
+ units: char

BillingMetrics

+ StartTime: char

BillingMeterRecordExtra

above RangeA Count:int
below RangeA Count: int
above RangeB Count: int
below RangeB Count: int

below 10 percent NormVol Du
voltagelLN avg: float

voltageLN min: float

voltageLN max: float

voltage unbalance avg: float
voltage _unbalance_min: float
voltage_unbalance_max: float

+ o+ + + + o+ + o+ o+

below 10 percent NormVol Count: int

TimeRecord

+ time: long

BillingMeterRecord

ration: float

0..

1

R S T T T S S S S SR S R S

real_energy: float
reactive_energy: float

real power avg:float

real power min: float

real power max: float
reactive_power avg: float
reactive_power_min: float
reactive_power_max: float

bill: float

voltagell avg: float

voltagelL min: float
voltagellL_max: float

above RangeA Duration: float
below RangeA Duration: float
above RangeB Duration: float
below RangeB Duration: float

Fig. 5.14: GridLAB-D billing meter metrics

class HouseMetrics /

HouseRecord

air_temperature_min: float
air_temperature_max: float
air_temperature avg: float
air_temperature deviation cooling:
air_temperature deviation heating
hvac load min: float

hvac load max: float
hvac_load_avg: float
total_load_min: float
total_load_max: float
total_load_avg: float
waterheater_load_min: float
waterheater_load_max: float
waterheater_load_avg: float

O R S T S S S S S P S S S

float
: float

+

TimeRecord

time: long +
1

HouseMetrics

StartTime: char

+Metadata |1..*

MetadataRecord

+ id: char
+ index:int
+ units: char

Fig. 5.15: GridLAB-D house metrics

144

Chapter 5. References

TESP Documentation, Release 1.0

class InverterMetrics /
InverterRecord TimeRecord InverterMetrics
+ real_power_avg: float + time:long + StartTime: char
+ real_power min: float
+ real_power _max: float
+ reactive_power_avg: float 1
+ reactive_power_min: float
+ reactive_power_max: float
+Metadata |1..*
MetadataRecord
+ id: char
+ index:int
+ units: char
Fig. 5.16: GridLAB-D inverter metrics
(continued from previous page)
3,
"real_power_avg": {
"index": 2,
"units": "W"
3
"real_power_max": {
"index": 1,
"units": "W"
1
"real_power_min": {
"index": O,
"units": "W"
}
be
"StartTime": "2013-07-01 00:00:00 PDT",
"10200": {
"battery_inverter_housel®_R1_12_47_1 tm_157": [
-0.0,
-0.0,
0.0,
0.0,
0.0,
0.0
1,
"battery_inverter_housel®_R1_12_47_1_tm_273": [
-0.0,
-0.0,
0.0,
0.0

(continues on next page)

5.1. Design Reference 145

TESP Documentation, Release 1.0

(continued from previous page)

0.0,
0.0

1,

}

"10500": {

"battery_inverter_housel®_R1_12_47_1_tm_157": [
-0.0,
-0.0,
0.0,
0.0,
0.0,
0.0

1,

}

}

Fig. 5.17 shows the transactive agent dictionary and metrics file structures. Currently, these include one double-auction
market per substation and one double-ramp controller per HVAC. Each dictionary (map) is keyed to the controller or
market id. The Controller dictionary (top left) has a houseName for linkage to a specific house within the GridLAB-D
model. In Version 1, there can be only one Market instance per GridLAB-D model, but this will expand in future
versions. See the GridLAB-D market module documentation for information about the other dictionary attributes.

There will be two JSON metrics output files for TEAgents during a simulation, one for markets and one for controllers,
which are structured as shown at the bottom of Fig. 5.17. The use of StartTime and Metadata is the same as for
PYPOWER and GridLAB-D metrics. For controllers, the bid price and quantity (kw, not kwh) is recorded for each
market clearing interval’s id. For auctions, the actual clearing price and type are recorded for each market clearing
interval’s id. That clearing price applies throughout the feeder, so it can be used for supplemental revenue calculations
until more agents are developed.

The EnergyPlus dictionary and metrics structure in Fig. 5.18 follows the same pattern as PYPOWER, GridLAB-D
and TEAgent metrics. There are 42 metric values in the array, most of them pertaining to heating and cooling system
temperatures and states. Each EnergyPlus model is custom-built for a specific commercial building, with detailed
models of the HVAC equipment and zones, along with a customized Energy Management System (EMS) program
to manage the HVAC. Many of the metrics are specified to track the EMS program performance during simulation.
In addition, the occupants metric can be used for weighting the comfort measures; EnergyPlus estimates the number
of occupants per zone based on hour of day and type of day, then TESP aggregates for the whole building. The
electric_demand_power metric is the total three-phase power published to GridLAB-D, including HVAC and variable
loads from lights, refrigeration, office equipment, etc. The kwhr_price will correspond to the market clearing price
from Fig. 5.17. Finally, the ashrae_uncomfortable_hours is based on a simple standardized model, aggregated for all
zones [4].

5.1.4 GridLAB-D Enhancements

The TSP simulation task includes maintenance and updates to GridLAB-D in support of TESP. This past year, the
GridLAB-D enhancements done for TESP have included:

1. Extraction of the double-auction market and double-ramp controller into separate modules, with communication
links to the internal GridLAB-D houses. This pattern can be reused to open up other GridLAB-D controller
designs to a broader community of developers.

2. Porting the FNCS-enabled version of GridLAB-D to Microsoft Windows. This had not been working with the
MinGW compiler that was recently adopted for GridLAB-D on Windows, and it will be important for other

146 Chapter 5. References

TESP Documentation, Release 1.0

class AgentMetrics)

HVACAgent

. T Tk T T i i e T S S S S S

meterName: char
houseName: char

period: float

ramp: float

offset_limit: float
deadband: float
price_cap: float
weekup_start: float
wakeup_set: float
daylight_start: float
daylight_set: float
evening_start: float
evening_set: float
night_start: float
night_set: float
weekend_day_start: float
weekend_day_set: float
weekend_night_start: float
weekend_night_set: float
control_mode: ControlModeEnum
use_predictive_bidding: boolean
use_override: boolean
basepoint: float

setpoint: float

bid_price: float
cleared_price: float
mean: float

std_dev: float

air_temp: float

hvac_kw: float

hvac_on: boolean

mtr_v: float

HVACAgentMetrics

+

+ time:long

+HVACAgents

1.*%

AgentDictionary

+Auctions

«enumeration»
ControlModeEnum

CN_RAMP
CN_DOUBLE_RAMP

«enumeration»
ClearingTypeEnum

+ bid_price: float
+ bid_quantity: float
+ id: char

+Metadata | +

+
+

HVACAgentRecord

MetadataRecord

NULL
FAIL
EXACT
BUYER
SELLER
PRICE

1..*

Auction

L T S A T T s

period: float

mean: float

stdev: float

pricecap: float
max_capacity_reference_bid_quantity: float
statistic_mode: boolean
stat_interval: float
stat_mode: char
stat_type: char
stat_value: float
curve_buyer: int
curve_seller: int
refload: float

Imp: float

unresp: float
agg_unresp: float
agg_resp_max: float
agg_cl: float

agg_c2: float

agg deg:int
clearing_type: ClearingTypeEnum
clearing_quantity: float
clearing_price: float
marginal_quantity: float
marginal_frac: float
clearing_scalar: float

AuctionMetrics

+ StartTime: char

+Metadata
id: char
index: int 1..*
units: char

‘ AuctionRecord

+ id: float

+ clearing_type: ClearingTypeEnum
+ clearing_price: float

Fig. 5.17: TEAgent dictionary and metrics

5.1. Design Reference

147

TESP Documentation, Release 1.0

class EplusMetrics)

EplusRecord

N e S o A

id: char
ashrae_uncomfortable hours min: float
ashrae_uncomfortable_hours_max: float
ashrae_uncomfortable hours avg: float
cooling_controlled load min: float
cooling_controlled_load_max: float
cooling_controlled_load_avg: float
cooling_current_temperature_min: float
cooling_current_temperature_max: float
cooling_current_temperature_avg: float
cooling_desired temperature_min: float
cooling_desired temperature _max: float
cooling_desired temperature avg: float
cooling_power_state_min: float
cooling_power_state max: float
cooling_power_state avg: float
cooling_setpoint_delta_min: float
cooling_setpoint_delta_max: float
cooling_setpoint delta avg: float
electric demand_power_min: float
electric_demand_power_max: float
electric demand _power_avg: float
occupants_total min:int
occupants_total_max: int
occupants_total_avg: int

heating controlled load min: float
heating controlled load max: float
heating_controlled_load_avg: float
heating current_temperature_min: float
heating current temperature max: float
heating_current_temperature_avg: float
heating_desired_temperature_min: float
heating desired temperature _max: float
heating desired temperature avg: float
heating_power_state_min: float
heating_power_state_manx: float
heating power state avg: float

heating setpoint_delta min: float
heating_setpoint_delta_max: float
heating setpoint delta_avg: float
kwhr_price_min: float

kwhr_price_max: float

kwhr_price_avg: float

EplusBuilding

Id: char
Description: char
EMS: char

HVAC: char
Area_ft2: double
Stories: int

Zones: int
Weather file: char
GLDBus: char

+ o+ + o+ o+ o+ 4+

TimeRecord

+ time:long

+Buildings

EplusDictionary

+ Version: char

EplusMetrics

+Metadata | 1..*

MetadataRecord

+ id: char
+ index:int
+ units: char

Fig. 5.18: EnergyPlus dictionary and metrics

148

Chapter 5. References

TESP Documentation, Release 1.0

projects.

3. Implementing the JSON metrics collector and writer classes in the tape module. This should provide efficiency
and space benefits to other users who need to post-process GridLAB-D outputs.

4. Implementing a JSON-based message format for agents running under FNCS. Again, this should provide effi-
ciency benefits for other projects that need more complicated FNCS message structures.

5.1.5 Developing Valuation Scripts

In order to provide new or customized valuation scripts in Python, the user should first study the provided examples.
These illustrate how to load the JSON dictionaries and metrics described in Section 1.5, aggregate and post-process
the values, make plots, etc. Coupled with some experience or learning in Python, this constitutes the easiest route to
customizing TESP.

5.1.6 Developing Agents

The existing auction and controller agents provide examples on how to configure the message subscriptions, publish
values, and link with HELICS at runtime. Section 1.4 describes the existing messages, but these constitute a minimal
set for Version 1. It’s possible to define your own messages between your own TEAgents, with significant freedom.
It’s also possible to publish and subscribe, or “peek and poke”, any named object / attribute in the GridLAB-D model,
even those not called out in Section 1.4. For example, if writing a waterheater controller, you should be able to read
its outlet temperature and write its tank setpoint via HELICS messages, without modifying GridLAB-D code. You
probably also want to define metrics for your TEAgent, as in Section 1.5. Your TEAgent will run under supervision
of a HELICS broker program. This means you can request time steps, but not dictate them. The overall pattern of a
HELICS-compliant program will be:

1. Initialize HELICS and subscribe to messages, i.e. notify the broker.

2. Determine the desired simulation sfop_time, and any time step size (delta_t) preferences. For example, a trans-
active market mechanism on 5-minute clearing intervals would like delta_t of 300 seconds.

3. Set time_granted to zero; this will be under control of the HELICS broker.

4. Initialize time_request; this is usually 0 + delta_t, but it could be stop_time if you just wish to collect messages
as they come in.

5. While time_granted < stop_time:
a. Request the next time_request from HELICS; your program then blocks.

b. HELICS returns time_granted, which may be less than your time_request. For example, controllers might
submit bids up to a second before the market interval closes, and you should keep track of these.

c. Collect and process the messages you subscribed to. There may not be any if your time request has simply
come up. On the other hand, you might receive bids or other information to store before taking action on
them.

d. Perform any supplemental processing, including publication of values through HELICS. For example, sup-
pose 300 seconds have elapsed since the last market clearing. Your agent should settle all the bids, publish
the clearing price (and other values), and set up for the next market interval.

e. Determine the next time_request, usually by adding delta_t to the last one. However, if time_granted has
been coming irregularly in 5b, you might need to adjust delta_t so that you do land on the next market
clearing interval. If your agent is modeling some type of dynamic process, you may also adapt delta_t to
the observed rates of change.

f. Loop back to 5a, unless time_granted >= stop_time.

5.1. Design Reference 149

TESP Documentation, Release 1.0

6. Write your JSON metrics file; Python has built-in support for this.
7. Finalize HELICS for an orderly shutdown, i.e. notify the broker that you’re done.

The main points are to realize that an overall “while loop” must be used instead of a “for loop”, and that the time_granted
values don’t necessarily match the time_requested values.

Developers working with C/C++ will need much more familiarity with compiling and linking to other libraries and ap-
plications, and much more knowledge of any co-simulators they wish to replace. This development process generally
takes longer, which represents added cost. The benefits could be faster execution times, more flexibility in customiza-
tion, code re-use, etc.

5.1.7 tesp_support Package Design

class AsBuilt
it cUrve hwac simple_auction
ClearingType
+ __init_ (wan) + _init_ fwar, var, war, war + _init__fwar, wvar, war)
+ MULL:war=0 + set_curve_ardenwar, war + inform_bid{war, war + zet_refloadivar, var
+ FAILURE:war=1 + add_to_curnveiwar, var, var, var + bid_acceptedivan + zet lmplvar, van
+ FRICE:var=2 + tfarmulate_bid{var + initAuctionfvar)
+ EXACT:war=3 + change_baszepointvar, wvar, var) + update_statistic=(van
+ SELLER:wvar=+< + set_hwac_loadwar, var + clear_bidstwan
+ BUYER:war=5 + set_hvac_statefvar, wan + collect_bidivar, var
+ =et_air_templvar, var) + aggregate_bids(warn)
+ =et_woltagefwar, var) + clear_mamketvar, var, warn
TespConfigGUl TespMonitor ERCOT TespManitor GUI L
ChoosablePlot
+ __init__{war, war + __init__{war, var + __init__fwar, war
+ AttachFramelwar, war, war + onFramaConfiguretwar, war + on_clesingwarn + __init__(war, war, var, var, var, wvar)
+ ReloadFrameivar, var, var + on_clozingivan + Quitivan + onTopicSelectedivar, var)
+ meSamplefvar, var) + Quitfvar + OpenCanfigivan
+ meBand(var, var) + OpenConfigivar) + kill_alltwar)
+ SizeMaonteCarlolvar, war + kill_alliwar) + update_plots(var, war)
+ InitializeMonteCarlafvar, war) + update_plotsivar, wvan + launch_allivar)
+ SizeMonteCarloFrametvar, war) + CaloulateVfalueivar, var, war, war
+ GenerateFiles(var) + launch_alliwar)
+ FReadFramelwar, war, var
+ SaweCanfiglvar
+ JzonToSectionfvar, war, war
+ OpenCaonfiglvar
+ UpdateMonteCarlaFramelvar)

Fig. 5.19: Classes in the tesp_support package.

5.1.8 Development Work Flow for tesp_support
This is the main code repository for Python-based components of TESP, including the transactive agents, case config-
uration and post-processing. Currently, there are three kinds of transactive agent implemented here:

1. double-auction spot market, typically runs every 5 to 15 minutes

2. an electric cooling controller based on the Olympic Peninsula double-ramp method

3. an electric pre-cooling controller used to mitigate overvoltages in the NIST TE Challenge Phase 2

To develop a new agent, you may choose to copy an example Python file from this directory into your own test directory,
to serve as a starting point. When finished, you should integrate the agent into this tesp_support package, so it will
be available to other TESP developers and users. In this re-integration process, you also need to modify api.py so that

150 Chapter 5. References

TESP Documentation, Release 1.0

other Python code can call your new agent, and test it that way before re-deploying tesp_support to PyPi. Also review
setup.py in the parent directory to make sure you’ve included any new dependencies, including version updates.

A second method is to create your new file(s) in this directory, which integrates your new agent from the start. There
will be some startup effort in modifying api.py and writing the script/batch files to call your agent from within your
working test directory. It may pay off in the end, by reducing the effort and uncertainty of code integration at the end.

Suggested sequence of test cases for development:

1.

30-house example at https://github.com/pnnl/tesp/tree/master/examples/te30. This includes one large building,
one connection to a 9-bus/4-generator bulk system, and a stiff feeder source. The model size is suited to manual
adjustments, and testing the interactions of agents at the level of a feeder or lateral. There are effectively no
voltage dependencies or overloads, except possibly in the substation transformer. This case runs on a personal
computer in a matter of minutes.

8-bus ERCOT example at https://github.com/pnnl/tesp/tree/master/ercot/case8. This includes 8 EHV buses and
8 distribution feeders, approximately 14 bulk system units, and several thousand houses. Use this for testing your
agent configuration from the GridLAB-D metadata, for large-scale interactions and stability, and for interactions
with other types of agent in a less controllable environment. This case runs on a personal computer in a matter
of hours.

200-bus ERCOT example, when available. This will have about 600 feeders with several hundred thousand
houses, and it will probably have to run on a HPC. Make sure the code works on the 30-house and 8-bus examples
first.

From this directory, ‘pip install -e .” points Python to this cloned repository for any calls to tesp_support functions

See the https://github.com/pnnl/tesp/tree/master/src/tesp_support/tesp_support for aroadmap of existing Python
source files, and some documentation. Any changes or additions to the code need to be made in this directory.

Run tests from any other directory on this computer

When ready, edit the tesp_support version number and dependencies in setup.py
To deploy, ‘python setup.py sdist upload’

Any user gets the changes with “pip install tesp_support —upgrade’

Use ‘pip show tesp_support’ to verify the version and location on your computer

5.2 Code Reference

5.2.1 TSO Case Data

The TSO schema was based on the MATPOWER formats for the network and generator cost data, supplemented with
TESP data. Code in tso_PYPOWER.py and tso_psst.py reads this data from a JSON file.

Transmission System Operator (TSO)

http://example.com/root.json

type object
properties
¢ version The Version Schema
not used
type integer

continues on next page

5.2.

Code Reference 151

https://github.com/pnnl/tesp/tree/master/examples/te30
https://github.com/pnnl/tesp/tree/master/ercot/case8
https://github.com/pnnl/tesp/tree/master/src/tesp_support/tesp_support
http://example.com/root.json

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

¢ baseMVA

e StartTime

¢ Tmax

¢ Period

e pf_dc

e opf_dc

* bus

examples 2
default 0

The Basemva Schema

MVA base for impedances
type integer
examples 100
default 0

The Starttime Schema

Date and time corresponding to 0 seconds in simulation

type string

examples 2013-07-01 00:00:00
pattern NS

default

The Tmax Schema
Number of seconds to simulate

type integer

examples 86400

default 0

The Period Schema

Optimal power flow (OPF) interval in seconds
type integer

examples 300

default 0

The Dt Schema

Regular power flow (PF) interval in seconds
type integer

examples 60

default 0

The Pf_dc Schema
1 for DC PF, O for AC PF

type integer
examples 1
default 0

The Opf_dc Schema
1 for DC OPF, 0 for AC OPF

type integer
examples 1
default 0
The Bus Schema
Bus data, including loads and voltage base
type array
items Bus Array
type
items

array
Bus Number

type number
examples 1

Type (1=load,2=gen,3=swing)
type number
enum 1,2,3
examples 3

Pd (load)

continues on next page

152

Chapter 5. References

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

e gen

The Gen Schema
Generator ratings
type

items

array
Generator Array
type

items

type
examples

Qd (load)
type
examples

Gs (shunt MW)
type
examples

Bs (shunt MVA)
type
examples
Area

type
examples

V magnitude (pu)
type
examples

V angle (deg)
type
examples

kV base

type
examples
Zone

type
examples
Vmax pu
type
examples
Vmin pu

type
examples

array

Bus

type

examples

Pg (MW)

type

examples

Qg (MVAR)
type

examples
QOmax (MVAR)
type

examples
QOmin (MVAR)
type

number
15167.5

number

3079.89

number
0

number

5000

number
1

number

1

number
0

number
345

number

number
1.1

number

0.9

number

number
0

number
0

number
6567

number

continues on next page

5.2. Code Reference

153

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

examples -6567

. Vg (pu)
type number
examples 1

. MVA base
type number
examples 19978.8

. Status (1 in service)
type number
enum 0,1
examples 1

J Pmax (MW)
type number
examples 19978.8

. Pmin (MW)
type number
examples 1998

. Pcl
type number
examples 0

. Pc2
type number
examples 0

. Qclmin
type number
examples 0

J QOclmax
type number
examples 0

. Qc2min
type number
examples 0

J Qc2max
type number
examples 0

. AGC ramp rate
type number
examples 0

. 10-min ramp rate
type number
examples 0

. 30-min ramp rate
type number
examples 0

. Reactive ramp rate
type number
examples 0

. Area participation factor
type number
examples 0

* branch The Branch Schema
Lines and transformers; pu impedance and ratings

continues on next page

154 Chapter 5. References

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

¢ areas

* gencost

type
items

The Areas Schema

PF areas are not currently used in TESP

type

The Gencost Schema

array
Branch Array
type

items

array

array
From Bus

type number
examples 5

To Bus

type number
examples 6

R (pu)

type number
examples 0.004237
X (pu)

type number
examples 0.035898
B (pu)

type number
examples 2.48325
Rating A, short term (MVA)

type number
examples 2168
Rating B, long term (MVA)

type number
examples 2168
Rating C, emergency (MVA)
type number
examples 2168

Tap Ratio for Xfmrs (From/To)
type number
examples 0

Shift Angle for Xfmrs (deg)

type number
examples 0

Status (1 in service)

type number
enum 0,1
examples 1

Min Angle Difference From-To (deg)
type number
examples -360
Max Angle Difference From-To (deg)
type number
examples 360

Cost functions for generators and dispatchable loads

type
items

array

Generator Cost Array

Indexing must match the Generators

continues on next page

5.2. Code Reference

155

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

* DSO

The DSO Schema

type
items

array

Flag - 2 for polynomial, 1 for piecewise lin-
ear

type number
examples 2
Startup cost

type number
examples 0
Shutdown cost

type number
examples 0
Number of coefficients

type number
examples 3

C2 coefficient

type number
examples 0.005
C1 coefficient

type number
examples 40

CO coefficient

type number
examples 0

DSO topics, scaling factors and initial conditions at selected buses

type
items

array
DSO Bus Array
type

items

array
bus ID

type integer
examples 1

Name for passing messages
type string
examples SUBSTATION1
GridLAB-D Scale Factor

type number
examples 792
Nominal P in MW

type number
examples 15167.5
Nominal Q in MVAR

type number
examples 3079.89
Scale factor for curve load
type number
examples 0.5
Skew for curve load in seconds
type number
examples 1711

Estimated P at time 0

continues on next page

156

Chapter 5. References

TESP Documentation, Release 1.0

Table 5.1 — continued from previous page

type number
examples 4788.99
. Estimated Q at time 0
type number
examples 972.66
¢ UnitsOut The Units Out Schema
Schedule of generators out of service
type array
items Generator Outage Array
type array
items

e BranchesOut The Branches Out Schema
Schedules of branches out of service

Index into Generators

type number
examples 1

Time outage starts in seconds
type number
examples 108000
Time outage ends in seconds
type number
examples 154000
array

Index into Branches

type number
examples 2

Time outage starts in seconds
type number
examples 108000
Time outage ends in seconds
type number
examples 154000

type array
items Branch Outage Array
type
items
* swing_bus The Swing_bus Schema
Swing bus designation, depends on unit commitment
type integer
examples 1
default 0

definitions

5.2. Code Reference

157

TESP Documentation, Release 1.0

5.2.2 src Directory Structure

This list shows directories and Python files under the tesp/src repository. On GitHub, each README contains a list
of other files.

¢ archive

— pypower; legacy files to patch PYPOWER; we have been able to incorporate these patches into the main
PYPOWER distribution.

comms_metrics; a Power Distribution System Model Analysis tool not yet public though pypi. Not only can it
perform metric calculations, it also has the ability to plot the models as a network and parse different file formats
as pre-processing for the data analysis.

energyplus; C++ code to build a simple interface agent for EnergyPlus; this is part of the TESP distribution and
used in the te30, sgipl and energyplus examples.

gridlabd; legacy files for the house populations and feeder growth model; these features are mostly subsumed
into tesp_support

jupyter; a prototype Jupyter notebook used for post-processing demonstrations and training
matpower

— ubuntu; legacy code that wraps MATPOWER for TESP, but only on Ubuntu. We now use PYPOWER.
In 2017, the wrapping process was very difficult on Mac OS X, and unsuccessful on Windows using free
compilers.

synComGraph; graph algorithms to generate a synthetic communication network graph topology corresponding
to a given feeder topology

tesp_support; utilities for building and running using PYPOWER with or without FNCS/HELICS co-
simulations

— setup.py; contains the version number and dependencies for tesp_support package
— tesp_support; Python code for agents, configuration and post-processing
% api; code that configures new capabilities for TESP
- data.py; the paths to data libraries
- entity.py; utilities for assign json file to attribute in python script

- fncs.py; the Python interface to FNCS, which is a C/C++ shared object library, or dynamic link
library (Windows)

- helpers.py; utility functions for use within tesp_support

- make_ems.py; creates and merges the EMS for an EnergyPlus building model

- model.py; GridLAB-D model I/O for TESP api

- modifier.py; modify GridLAB-D model I/O for TESP api

- metric_api.py; utility metric api functions for use in post-processing

- metric_collector.py; utility metric collector functions for use within simulation or post process
- parse_helpers.py; parse text for different types of numbers

- player.py; configure and plays a files for a simulation

- process_eplus.py; makes tabular and plotted summaries of EnergyPlus results

- process_gld.py; makes tabular and plotted summaries of GridLAB-D results (substation
power/losses, average and sample house temperatures, meter voltage min/max)

158

Chapter 5. References

TESP Documentation, Release 1.0

- process_houses.py; plots the HVAC power and air temperature for all houses

- process_inv.py; makes tabular and plotted summaries of results for NIST TE Challenge 2, in-
cluding inverters, capacitor switching and tap changes

- process_pypower.py; makes tabular and plotted summaries of PYPOWER results for the 9-bus
model in te30 or sgipl

- process_voltages.py; plots the minimum and maximum voltage for all houses

- test_runner.py; auto test runner for TESP run* cases based on pre-existing shell script file.
- time_helpers.py; utility time functions for use within tesp_support, including new agents

- tso_helpers.py; helpers for PYPOWER, PSST, MOST solutions

- tso_PSST.py; manages PSST solutions for the DSOT example, based on a 8-bus or 200-bus
model. Note that the ERCOT cases use custom local versions of this code instead.

- tso_PYPOWER.py; manages PYPOWER solutions for the te30 and sgipl examples, based on
a 9-bus textbook model. Note that the ERCOT cases use custom local versions of this code
instead.

* original; legacy code that configures most example/capabilities for TESP

- commercial_feeder_glm.py; from a PNNL taxonomy feeder as the backbone, populates it with
commercial building, solar PV, batteries and smart inverters

- copperplate_feeder_glm.py; from a PNNL taxonomy feeder as the backbone, populates it with
sudo copperplate

- curve; accumulates a set of price, quantity bids for later aggregation for a curve

- glm_dict.py; parses the GridLAB-D input (GLM) file and produces metafile data in JSON for-
mat, describing the houses, meters, DER, capacitors and regulators

- precool.py; manages a set of house thermostats for NIST TE Challenge 2. There is no commu-
nication with a market. If the house experiences an overvoltage, the thermostat is turned down
and locked for 4 hours, unless the house temperature violates comfort limits.

- prep_precool.py; configures the agent metadata (JSON) and GridLAB-D HELICS subscrip-
tions/publications for NIST TE Challenge 2 precooling

- prep_substation.py; configures the agent metadata (JSON) and GridLAB-D HELICS subscrip-
tions/publications for the double-auction, double-ramp simulations

- process_agents.py; makes tabular and plotted summaries of agent results

- residential_feeder_glm.py; from a PNNL taxonomy feeder as the backbone, populates it with
houses, solar PV, batteries and smart inverters

- simple_auction.py; implements the double-auction agent and the Olympic Peninsula cooling
agent, as separate Python classes, called by auction.py

- tesp_case.py; supervises the assembly of a TESP case with one feeder, one EnergyPlus building
and one PYPOWER model. Reads the JSON file from tesp_config.py

- tesp_config.py; a GUI for creating the JSON file used to configure a TESP case

- tesp_monitor.py; a GUI for launching a TESP simulation, monitoring its progress, and termi-
nating it early if necessary

+ weather; code that configures weather capabilities for TESP

- PSM_download.py; simple script to download PSM weather files and convert them to DAT files

5.2. Code Reference 159

TESP Documentation, Release 1.0

- PSMv3toDAT.py; this code reads in PSM v3 csv files to converts weather DAT format for com-
mon use by agents

- README.md; this file

- TMY3toCSV.py; converts TMY3 weather data to CSV format for common use by agents

- TMYtoEPW.py; command-line script that converts a TMY?2 file to the EnergyPlus EPW format
- weather_Agent.py; publishes weather and forecasts based on a CSV file

consensus; custom code that for running the consensus mechanism on microgrid n DSOT co simula-
tion using TSO and DSO DER agents.

dsot; custom code that for running the DSOT co simulation using TSO and DSO DER agents. Used
for a 2021 journal paper on TESP and the DSOT example.

sgip1; custom code that plotted curves from different cases on the same graph. Used for a 2018 journal
paper on TESP and the SGIP1 example.

matpower; legacy code that configures and post-processes MATPOWER v5+ for TESP. We now use
PYPOWER and PSST instead.

valuation; custom code that post-processed SGIP1 outputs for the 2018 journal paper. May serve as
an example, or use Jupyter notebooks instead.

— test; scripts that support testing the package; not automated

5.2.3 Links to Dependencies

Docker

EnergyPlus
GridLAB-D

Matplotlib
MATPOWER

NetworkX

NumPy

Pandas

pip

PYPOWER

Python
SciPy
TESP

160

Chapter 5. References

https://www.docker.com
https://energyplus.net
http://gridlab-d.shoutwiki.com
https://www.matplotlib.org
https://www.matpower.org
https://www.networkx.org
https://www.numpy.org
https://pandas.pydata.org
https://pip.pypa.io/en/stable
https://github.com/rwl/PYPOWER
https://www.python.org
https://www.scipy.org
https://tesp.readthedocs.io/en/latest

TESP Documentation, Release 1.0

5.3 tesp_support package

Transactive Energy Simulation Platform (TESP) Contains the python packages for the tesp_support

Example

To start PYPOWER for connection to FNCS:

import tesp_support.original.tso_PYPOWER_f as tesp
tesp.tso_pypower_loop_f('te30_pp.json', 'TE_Challenge')

To start PYPOWER for connection to HELICS:

import tesp_support.api.tso_PYPOWER as tesp
tesp.tso_pypower_loop('te30_pp.json', 'TE_Challenge', helicsConfig='tso.json")

5.3.1 Subpackages

tesp_support.api package

Transactive Energy Simulation Platform (TESP) Contains the python files for any analysis

Submodules
tesp_support.api.bench_profile module

tesp_support.api.bench_profile.bench_profile (func)

tesp_support.api.data module
tesp_support.api.entity module

class tesp_support.api.entity.Entity(entity, config)
Bases: object

add_attr (datatype, label, unit, item, value=None)
Add the Item attribute to the Entity

Parameters
» datatype (str) — Describes the datatype of the attribute
¢ label (str) — Describes the attribute
¢ unit (str) — The unit name of the attribute
e item (str)— The name of the attribute
¢ value (any) — The value of the item

Return type
Item

5.3. tesp_support package 161

TESP Documentation, Release 1.0

count ()

Returns
The number of defined Items in the Entity

Return type
int

del_attr(item)
Delete the Item from the Entity

Parameters
item (str) — name of the attribute in the Entity

del_instance (object_name)
Delete the Entity instance

Parameters
object_name (str) — the name of the instance

del_item(object_name, item)
Delete the value of the Entity instance from the Item
Parameters
¢ object_name (str) — the name of the instance
e item (str)— name of the Item
find_item(item)
Find the Item from the Entity

Parameters
item (str) — name of the attribute in the entity

Return type
Item

get_instance (object_name)
Get the Entity instance

Parameters
object_name (str) — the name of the instance

Returns
an object with name and values or None when object_name is invalid

Return type
Entity instance

instanceTolson()
Stringify the instance(s) in the Entity to JSON

Returns
JSON string of the instance(s) in the Entity

Return type
str

instanceToSQLite (connection)
Commit the instance(s) in the Entity to SQLite

162 Chapter 5. References

TESP Documentation, Release 1.0

Parameters
connection — A valid sqlite connection object

set_instance (object_name, params)

Set the Entity instance the given set of parameters
Parameters
¢ object_name (str) — the name of the instance
e params (list<Ilist>) - list of the attribute parameters

Returns
an object with name and values

Return type
Entity instance

set_item(object_name, item, val)
Set the value of the Entity instance for the Item

Parameters
¢ object_name (str) — the name of the instance
e item (str)— name of the Item
¢ val (any) — value of the item

Returns
the value or None when the value has not been set

Return type
any

toHelp)
List the Item(s) in the Entity in help format with datatype, label, name, default value

Returns
format list of the Items in the Entity

Return type
str

toJson()
List the Item(s) in the Entity in json string format

Returns
JSON string of the Items in the Entity

Return type
str

toList()
List the Item(s) in the Entity

Returns
list of Items in the Entity

Return type
dict

5.3. tesp_support package 163

TESP Documentation, Release 1.0

toSQLite (connection)

Create a sqlite table to store the Item(s) in the Entity
with datatype, label, name, unit, default value

Parameters
connection (Connection) — A valid sqlite connection object

class tesp_support.api.entity.Item(datatype, label, unit, item, value=None, range_check=None)
Bases: object

toFrame()
List the attribute in the Items

Returns
with label, value, unit, datatype, name, range_check

Return type
dist

toJSONQO)
Stringify the attribute in the Items to JSON

Returns
JSON string with label, unit, datatype, value

Return type
str

toList()
List the attribute in the Items

Returns
with label, value, unit, datatype, name

Return type
dist

tesp_support.api.entity.assign_defaults(obyj, file_name)
Utilities that opens a JSON file and assigns the attributes to the specified object
Parameters
* obj (object) — any object like module or class
» file_name (str)-aJSON file fully qualified path and name

Returns
a dictionary of the JSON that has been loaded

Return type
dict

tesp_support.api.entity.assign_item_defaults(obyj, file_name)
Utilities that opens a JSON file and assigns the attributes Item to the specified object
Parameters
» obj (object) — any object like module or class

o file_name (str)-aJSON file fully qualified path and name

164 Chapter 5. References

TESP Documentation, Release 1.0

Returns
a dictionary of the JSON that has been loaded

Return type
dict

tesp_support.api.gridpiq module
tesp_support.api.helpers module

Utility functions for use within tesp_support, including new agents.

class tesp_support.api.helpers.HelicsMsg(name, period)
Bases: object

config(_n, _v)

pubs(_g, _k, _t, _o,_p)

pubs_e(_g, _k, _t, _u)
pubs_n(_g, _k, _1)
subs(_k, _t, _o, _p)
subs_e(_r, _k, _t, _i)
subs_n(_k, 1)
write_file(_fn)
class tesp_support.api.helpers.all_but_one_level (level)
Bases: object
static filter(logRecord)
class tesp_support.api.helpers.all_from_one_level_down (level)
Bases: object
filter(logRecord)
tesp_support.api.helpers.enable_logging(level, model_diag_level, name_prefix)
Enable logging for process
Parameters
* level (str) - the logging level you want set for the process
* model_diag_level (int) — initial value used to filter logging files
» name_prefix (str) — description prefix for the log file name
tesp_support.api.helpers.get_run_solver (name, pyo, model, solver)
tesp_support.api.helpers.gld_strict_name(val)

Sanitizes a name for GridLAB-D publication to FNCS GridLAB-D name should not begin with a number, or
contain ‘-” for FNCS

Parameters
val (str) — the input name

5.3. tesp_support package 165

TESP Documentation, Release 1.0

Returns
val with all ‘-’ replaced by ‘_’, and any leading digit replaced by ‘gld_’

Return type
str

tesp_support.api.helpers.random_norm_trunc(dist_array)

tesp_support.api.helpers.zoneMeterName (/dname)

Enforces the meter naming convention for commercial zones The commercial zones must be children of load
objects This routine replaces “_load_" with “_meter”.

Parameters
ldname (str) — the GridLAB-D name of a load, ends with _load_##

Returns
The GridLAB-D name of upstream meter

Return type
str

tesp_support.api.make_ems module

Creates and merges the EMS for an EnergyPlus building model
Public Functions:

make_ems
Creates the energy management system (EMS) for FNCS/HELICS to interface with EnergyPlus

merge_idf
Assembles the base IDF, the EMS, start time and end time

tesp_support.api.make_ems.cooling_coil_sensor (name, target, op)
tesp_support.api.make_ems.get_eplus_token(sval)
tesp_support.api.make_ems.global_variable (name, op)
tesp_support.api.make_ems.heating_coil_sensor (name, target, op)
tesp_support.api.make_ems.idf_int (val)

Helper function to format integers for the EnergyPlus IDF input data file

Parameters
val (int) — the integer to format

Returns
the integer in string format, padded with a comma and zero or one blanks, in order to fill three
spaces

Return type
Str

tesp_support.api.make_ems.make_ems (sourcedir="/output', baseidf='SchoolBase.idf, target="ems.idf",
write_summary=>False, bHELICS=False)

Creates the EMS for an EnergyPlus building model

Parameters

166 Chapter 5. References

TESP Documentation, Release 1.0

» sourcedir (str) — directory of the output from EnergyPlus baseline simulation, default

Joutput

baseidf (str) —is the original EnergyPlus model file without the EMS

* target (str) — desired output file in PWD, default ems.idf

e write_summary

bHELICS

tesp_support.api.make_ems.merge_idf (base, ems, StartTime, EndTime, target, StepsPerHour)

Assembles a base EnergyPlus building model with EMS and simulation period

Parameters

tesp_support.

tesp_support.

tesp_support.
tesp_support.
tesp_support.
tesp_support.

tesp_support.

tesp_support.
tesp_support.
tesp_support.
tesp_support.

tesp_support.

e base (str) -

fully qualified base IDF model

* ems (str) — fully qualified EMS model file

e StartTime (str) — Date-Time to start simulation, Y-m-d H:M:S

e EndTime (str) — Date-Time to end simulation, Y-m-d H:M:S

* target (str) — fully qualified path for new model

e StepsPerHour

api.make_ems.

api.make_ems.

api.make_ems.

api.make_ems.
api.make_ems.
api.make_ems.

api.make_ems

api.make_ems.

api.make_ems.
api.make_ems.
api.make_ems.

api.make_ems.

output_variable(name, target, op)

print_idf_summary (zones, zonecontrols, thermostats, schedules, hcoils, ccoils,

hvacs)
schedule_actuator (name, target, op)
schedule_sensor (name, op)
summarize_idf (fname, baseidf)

valid_var (name)

.write_new_ems (target, zones, zonecontrols, thermostats, schedules, hcoils,

ccoils, hvacs, bHELICS)
zone_heating_sensor (name, op)
zone_occupant_sensor (name, op)
zone_sensible_cooling_sensor (name, op)
zone_sensible_heating_sensor (name, op)

zone_temperature_sensor (name, op)

5.3. tesp_support package

167

TESP Documentation, Release 1.0

tesp_support.api.metrics_api module

tesp_support.api.metrics_api.actual_der_vs_projected_ratio(actual_der, actual_col_name,
projected_col_name,
projected_der=None)

This function calculates the accuracy of the predictive model, by comparing predicted results with actual results
Metric defined in the document VM_ Actual Benefits_Predicted Benefits.docx
Parameters

e actual_der (dataframe)—time series dataframe that contains the total benefits from DER,
as observed ex post.

e actual_col_name (str) —id of the dataframe column that contains the actual DER benefit
values

* projected_col_name (str) - id of the dataframe column that contains the projected DER
benefit values

» projected_der (dataframe) — time series dataframe that contains the projected benefits
from DER, as observed ex post.

Returns
time series dataframe that contains the calculated ratios

Return type
dataframe

tesp_support.api.metrics_api.get_average_air_temp_deviation(actual_df, actual_col_name,
set_point_col_name, set_points_df
start_date_time)

Function calculates per device average deviation from desired indoor temperature set point in a year for each
DSO

Metric defined in document VM_Average Indoor Air Temp Deviation.docx
Parameters

* actual_df (dataframe) — per-device average deviation from desired air temperature set
point

* actual_col_name (str) — dataframe column id for the location of actual temperatures

* set_point_col_name (str) — dataframe column id for the location of set point data

* set_points_df (dataframe) — time series data frame containing the set points data.

* start_date_time (str) - the starting date and time when the calculation should start
Returns

the average of the calculated differences between the average of actual
indoor temperature deviation from set point over one year.

Return type
float

tesp_support.api.metrics_api.get_average_unit_price(time_series, column_id, start_date_time)

Function calculates the market average unit price (of electricity) over the course of 8,760 hours, in a specific
service territory managed by an independent system operator

Metric defined in document VM_Market Average Unit Price.docx

168 Chapter 5. References

TESP Documentation, Release 1.0

Parameters

* time_series (dataframe) — time series dataframe that contains the hourly market elec-
tricity prices for a year

* column_id (str) — name of the dataframe column that the price data is located
e start_date_time (str) — the date and time that the calculations are to start at

Returns
the average unit price for the year

Return type
float

tesp_support.api.metrics_api.get_avg_customer_demand (time_series, start_date, val_col_id)

This function calculates the average of customer demand based on 8,760 hours of the year
Metric defined in VM_Average Customer Demand.docx
Parameters

* time_series (dataframe) — time series dataframe representing a time series containing
customer demand records

» start_date (datetime) — the start date and time that should be used in the calculation

e val_col_id (str) —id of the dataframe column which contains the customer demand data
values

Returns
the calculated yearly average customer demand

Return type
float

tesp_support.api.metrics_api.get_emergency_scarcity_sell (scarcity_power_df, scarcity_col_id,
scarcity_price_df , price_col_id,
generation_capacity_df , gen_col_id,
available_power_df, available_col_id)

Function calculates the annual value of firm energy for Scarcity Conditions
Metric is defined in the document VM_Emergency Scarcity Wholesales Sells.docx
Parameters

» scarcity_power_df (dataframe) — time series dataframe that contains the power data
used in calculation

e scarcity_col_id (str) — name of the dataframe column where the power data is located

» scarcity_price_df (dataframe)—time series dataframe that contains the price data used
in calculation

e price_col_id (str)— name of the dataframe column where the price data is located

* generation_capacity_df (dataframe) — time series dataframe that contains the gener-
ation data used in calculation

» gen_col_id (str)— name of the dataframe column where the generation data is located

e available_power_df (dataframe) — time series dataframe that contains the available
power data used in calculation

5.3. tesp_support package 169

TESP Documentation, Release 1.0

» available_col_id (str)— name of the dataframe column where the available power data
is located

Returns
time series dataframe containing the calculated scarcity values

Return type
dataframe

tesp_support.api.metrics_api.get_feeder_energy_losses(feeder_gen_df, gen_column_id,
feeder_load_df , load_column_id,
start_date_time, duration)

Function calculates the impact of trans-active energy systems on feeder energy losses. Data records in the time
series entered as input must be recorded at five minute intervals

Metric defined in document VM_Feeder Energy Losses.docx
Parameters

» feeder_gen_df (dataframe) — data frame containing the 5-min average total generation
from bulk power system and DERs

* gen_column_id (str) — name of the column in the feeder generation dataframe where the
generation data is located

» feeder_load_df (dataframe) — data frame containing the 5-min average total load

e load_column_id (str) — name of the column in the feeder load dataframe where the load
data is located

e start_date_time (str) — calculation start date and time
* duration (int) — the duration of time in hours that the calculations are to be performed

Returns
a dataframe object containing the generation, load, and losses data

Return type
dataframe

tesp_support.api.metrics_api.get_hot_water_deficit (water_temperatures, water_column_id,
desired_temperatures, desired_column_id,
flow_rates, flow_column_id, delta_t,
start_date_time, duration)

Function calculates device energy deficit from desired hot water temperature set point in a year
Metric defined in document VM_Hot Water Supply Deficit.docx
Parameters

* water_temperatures (dataframe) — per device 5-min average hot water actual tempera-
ture

» water_column_id (str) — name of the dataframe column where the temperature data is
located

» desired_temperatures (dataframe) — per device 5-min average hot water temperature
set point

* desired_column_id (str) — name of the dataframe column where the set point tempera-
ture data is located

» flow_rates (dataframe) — per device 5-min average hot water flow rate

170 Chapter 5. References

TESP Documentation, Release 1.0

e flow_column_id (str)— name of the dataframe column where the flow rate data is located

delta_t (float) — time difference
e start_date_time (str) — the date and time that the calculations are to start at
* duration (int) — the length of time which the calculations should be executed

Returns
time series dataframe containing the calculated deficit data

Return type
dataframe

tesp_support.api.metrics_api.get_indoor_air_temp_deviation(time_series, column_id, set_point,
start_date_time, duration)

Function calculates the maximum actual indoor temperature deviation from set point over one year.
Metric is defined in document VM_Max Indoor Air Temp Deviation.docx
Parameters

e time_series (dataframe) — time series dataframe that contains 5 minute max deviation
data for a year

e column_id (str) — the name of the dataframe column where the deviation data is located
* set_point (float) — The set point value that is to be used in the calculation

e start_date_time (str) — the date and time that the calculations are to start

* duration (int) - the time duration in hours for which the calculations should be performed

Returns
time series dataframe containing the maximum deviations calculated hourly from the input data

Return type
dataframe

tesp_support.api.metrics_api.get_max_comm_packet_size (time_series, size_column_id, start_date_time,
duration)

Function calculates the maximum size of a message sent in the communication channels
Metric is defined in document VM_Maximum Communication Packet Size.docx
Parameters

e time_series (dataframe) — time series dataframe that contains the communication net-
work packet size Mbs

* size_column_id (str) — name of the dataframe column that contains the packet size data
* start_date_time (str) - the starting date and time when the calculation should start
* duration (int) — the length of time which the calculations should be executed

Returns
the maximum communication packet size for the time period entered

Return type
float

tesp_support.api.metrics_api.get_max_duration_over_voltage (time_series, column_id, limit_val,
start_date_time, duration)

5.3. tesp_support package 171

TESP Documentation, Release 1.0

Function calculates the maximum duration of an over-voltage event reported at each feeder
Metric defined in document VM_Max Duration of Over-Voltage Violations.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the 5S-minute three-phase
voltage data

e column_id (str) — name of the dataframe column the voltage data is located

e limit_val (float) — threshold value used to compare voltage values against

e start_date_time (str) — calculation start date and time

* duration (int) — the duration of time in hours that the calculations are to be performed

Returns
hourly time series dataframe containing the calculated maximum duration of voltage violating
under-voltage limit

Return type
dataframe

tesp_support.api.metrics_api.get_max_duration_under_voltage (time_series, column_id, limit val,
start_date_time, duration)

Function calculates the maximum duration of an under-voltage event reported at each feeder
Metric defined in document VM_Max Duration of Under-Voltage Violations.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the S-minute three-phase
voltage data

* column_id (str) — name of the dataframe column the voltage data is located

e limit_val (float) — threshold value used to compare voltage values against

e start_date_time (str) — calculation start date and time

* duration (int) — the duration of time in hours that the calculations are to be performed

Returns
hourly time series dataframe containing the calculated maximum duration of voltage violating
under-voltage limit

Return type
dataframe

tesp_support.api.metrics_api.get_max_market_price(time_series, column_id, start_date_time)

Function calculates the highest market price (of electricity) over the course of 8,760 hours, in a specific service
territory managed by an independent system operator

Metric defined in document VM_Highest Market Price.docx
Parameters

* time_series (dataframe) — time series dataframe containing the hourly market price for
electricity within a territory served by an ISO or balancing authority, for each of the 8,760
hours per year.

e column_id (str) — name of the dataframe column where the market price data is located

e start_date_time (str) — the date and time that the calculations are to start at

172 Chapter 5. References

TESP Documentation, Release 1.0

Returns
the maximum market price value found in the market price dataset

Return type
float

tesp_support.api.metrics_api.get_max_over_voltage (time_series, column_id, threshold_val,
start_date_time, duration)

Function calculates the maximum over-voltage deviation reported each hour in the feeder voltage data
Metric is defined in document VM_Max Over-Voltage Violations.docx

Parameters

* time_series (dataframe) — time series dataframe containing feeder voltage data in 5
minute intervals

» column_id (str) — the name of the dataframe column where the voltage data is located

* threshold_val (float) - the maximum threshold data that is used to compare against the
voltage data

e start_date_time (str) — calculation start date and time

* duration (int) — the duration of time in hours that the calculations are to be performed

Returns
time series dataframe containing the calculated hourly over voltage maximum values

Return type
dataframe

tesp_support.api.metrics_api.get_max_under_voltage (time_series, column_id, threshold_val,
start_date_time, duration)

Function calculates the maximum over-voltage deviation reported each hour in the feeder voltage data
Metric is defined in document VM_Max Under-Voltage Violations.docx

Parameters

* time_series (dataframe) — time series dataframe containing feeder voltage data in 5
minute intervals

e column_id (str) — the name of the dataframe column where the voltage data is located

* threshold_val (float) — the maximum threshold data that is used to compare against the
voltage data

e start_date_time (str) — calculation start date and time

* duration (int) — the duration of time in hours that the calculations are to be performed

Returns
time series dataframe containing the calculated hourly over voltage maximum values

Return type
dataframe

tesp_support.api.metrics_api.get_mean_absolute_percentage (actual_load_df, actual_col_id,
forecasted_load_df , forecasted_col_id,
start_date_time, duration)

Function calculates the prediction accuracy of load forecasting methods.

Metric is defined in document VM_Mean Absolute Percentage (Load) Error.docx

5.3. tesp_support package 173

TESP Documentation, Release 1.0

Parameters

* actual_load_df (dataframe)—time series dataframe containing the actual load observed
over a period of time

e actual_col_id (str)— name of the column where actual load data is located

» forecasted_load_df (dataframe)— time series dataframe containing the forecasted load
observed over a period of time

» forecasted_col_id (str)— name of the column where forecasted load data is located
* start_date_time (str) — the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated ratios, the calculated average value

Return type
dataframe, float

tesp_support.api.metrics_api.get_minimum market_price(time_series, price_col_id, start_date_time)
Function calculates the minimum market price (of electricity) over the course of 8,760 hours

Metric defined in document VM_Minimum Market Price.docx
Parameters
* time_series (dataframe) — Hourly market prices for electricity
e price_col_id (str) - name of the dataframe column where the price data is located
* start_date_time (str) - the starting date and time when the calculation should start

Returns
the minimum market price found in the data over the course of a year

Return type
float

tesp_support.api.metrics_api.get_peak_demand(time_series, column_id, start_date_time)

This function calculates the highest hourly electricity demand (MW) in the year of data contained in the dataframe
This metric is defined in document VM_PeakDemand or PeakSupply.docx
Parameters

e time_series (dataframe) — time series dataframe that contains the demand values over
the course of a year

e column_id (str) — name of the dataframe column where the demand data is located
e start_date_time (str) — calculation start date and time

Returns
maximum value identified in the dataframe column identified by column_id

Return type
float

tesp_support.api.metrics_api.get_peak_supply (time_series, column_id, start_date_time)
This function calculates the highest hourly electricity supply (MW) in the year of data contained in the dataframe
This metric is defined in document VM_PeakDemand or PeakSupply.docx

Parameters

174 Chapter 5. References

TESP Documentation, Release 1.0

* time_series (dataframe) —time series dataframe that contains the supply values over the
course of a year

* column_id (str) — name of the dataframe column where the supply data is located
e start_date_time (str) — calculation start date and time

Returns
maximum value identified in the dataframe column identified by column_id

Return type
float

tesp_support.api.metrics_api.get_pv_aep_valuation(solar_irradiation, pv_system_area,
pv_system_efficiency)

Function calculates and estimate of the total annual power output from a PV system in the units of kWh
Metric defined in the document VM_PV Annual Energy Production.docx
Parameters

e solar_irradiation (float) — total solar irradiation incident on PV surface in the units
of kWh/sq.m.

* pv_system_area (float)— PV System Area
» pv_system_efficiency (float) - PV System Efficiency

Returns
the product of the three input values

Return type
float

tesp_support.api.metrics_api.get_reactive_power_demand (time_series, max_col_id, avg_col_id,
start_date_time, duration)

Function calculates the maximum and average substation reactive power flow reported each hour
Metric is defined in document VM_Substation Reactive Power Demand.docx
Parameters

* time_series (dataframe) — time series dataframe containing the 5-minute substation re-
active power flow data

* max_col_id (str)—name of the dataframe column containing the 5-minute maximum data
* avg_col_id (str) — name of the dataframe column containing the 5S-minute average data
* start_date_time (str) - the starting date and time when the calculation should start

e duration (int) - the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the hourly maximum and average values calculated by the func-
tion

Return type
dataframe

tesp_support.api.metrics_api.get_substation_peak_power (time_series, power_col_id, start_date_time,
duration)

Function calculates a substation’s maximum real power flow

Metric defined in document VM_ Substation Peak Real Power Demand.docx

5.3. tesp_support package 175

TESP Documentation, Release 1.0

Parameters

* time_series (dataframe) — time series containing substation real power flow (Mvar) at 5
minute intervals

» power_col_id (str) — name of the dataframe column containing the power flow data
» start_date_time (str) — the starting date and time when the calculation should start
* duration (int) - the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly peak power flow

Return type
dataframe

tesp_support.api.metrics_api.get_synch_date_range (time_series)

Function returns the latest starting date/time and the earliest ending date/time of the time series data frames in
the time series list

Parameters
time_series (1ist<dataframe>)— List containing a set of pandas dataframes each represent-
ing a time series

Returns
the latest start and the earliest end times found in the list of data frames

Return type
datetime, datetime

tesp_support.api.metrics_api.get_system_energy_loss(energy_sold_df, sold_col_id,
energy_purchased_df , purchased_col_id,
start_date_time, duration)

Function calculates the energy losses inclusive of transmission and distribution losses
Metric defined in document VM_Total System Losses.docx
Parameters

» energy_sold_df (dataframe)—time series dataframe containing the 5-minute sold energy
data

e sold_col_id (str) - name of the dataframe column where the sold data is located

» energy_purchased_df (dataframe) - time series dataframe containing the S-minute pur-
chased energy data

* purchased_col_id (str) — name of the dataframe column where the purchased data is
located

* start_date_time (str) — the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly energy loss

Return type
dataframe

tesp_support.api.metrics_api.get_system_energy_losses(feeder_generation_df, gen_col_id,
feeder_load_df , feeder_col_id,

start_date_time, duration)

176 Chapter 5. References

TESP Documentation, Release 1.0

Function calculates the total energy loss at a feeder
Metric is defined in document VM_System Energy Losses.docx
Parameters

» feeder_generation_df (dataframe) — time series dataframe containing the 5-minute
total feeder generation data

* gen_col_id (str)— name of the dataframe column where the generation data is located

» feeder_load_df (dataframe)—time series dataframe containing the 5-minute total feeder
load data

e feeder_col_id (str) — name of the dataframe column where the load data is located
* start_date_time (str) - the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly energy losses

Return type
dataframe

tesp_support.api.metrics_api.get_total_pv_reactive_power (time_series, pv_col_id, start_date_time,
duration)

Function calculates the hourly total system reactive power generated from PV
Metric defined in document VM_Total PV Reactive Power.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the 5-minute power data
used in the calculations

e pv_col_id (str)— name of the dataframe column where the power data is located
* start_date_time (str) - the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly total reactive power values

Return type
dataframe

tesp_support.api.metrics_api.get_total_pv_real_power (time_series, pv_col_id, start_date_time,
duration)

Function calculates the hourly total system reactive power generated from PV
Metric is defined in document VM_Total PV Real Power.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the 5-minute power data
used in the calculations

* pv_col_id (str) — name of the dataframe column where the power data is located
* start_date_time (str) - the starting date and time when the calculation should start

* duration (int) - the length of time in hours which the calculations should be executed

5.3. tesp_support package 177

TESP Documentation, Release 1.0

Return type
dataframe

tesp_support.api.metrics_api.get_total_wind_reactive_power (time_series, power_col_id,
start_date_time, duration)

Function calculates the hourly total system reactive power generated from Wind
Metric defined in document VM_ Total Wind Reactive Power.docx
Parameters

* time_series (dataframe) — time series dataframe containing the 5-minute wind reactive
power data

e power_col_id (str)— name of the dataframe column where the wind data is located
* start_date_time (str) — the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the hourly wind power results

Return type
dataframe

tesp_support.api.metrics_api.get_total_wind_real_power (time_series, power_col_id, start_date_time,
duration)

Function calculates the hourly total system real power generated from wind
Metric defined in document VM_Total Wind Real Power.docx
Parameters

* time_series (dataframe) — time series dataframe containing the 5-minute wind power
data

e power_col_id (str)— name of the dataframe column where the wind data is located
* start_date_time (str) - the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the hourly total wind data results

Return type
dataframe

tesp_support.api.metrics_api.get_transmission_over_voltage (time_series, voltage_col_id,
compare_val, start_date_time,
duration)

Function calculates the maximum over-voltage violations at the transmission node
Metric defined in document VM_Transmission Over-Voltage Violation.docx
Parameters

* time_series (dataframe) — time series dataframe containing the 3-phase transmission
node voltage

* voltage_col_id (str) — name of the dataframe column containing the voltage data

» compare_val (float) — threshold value to compare the data against

178 Chapter 5. References

TESP Documentation, Release 1.0

» start_date_time (str) — the starting date and time when the calculation should start
e duration (int) - the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the hourly transmission over voltage results

Return type
dataframe

tesp_support.api.metrics_api.get_transmission_under_voltage (time_series, voltage_col_id,
compare_val, start_date_time,
duration)

Function calculates the maximum under-voltage violations at the transmission node
Metric defined in document VM_Transmission Under-Voltage Violation.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the 5-minute voltage data
» voltage_col_id (str) — name of the column where the voltage data is located
» compare_val (float) - threshold value to compare the voltage data against
* start_date_time (str) - the starting date and time when the calculation should start
e duration (int) - the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly under voltage results

Return type
dataframe

tesp_support.api.metrics_api.get_transmission_voltage_magnitude (time_series, column_id,
start_date, duration)

Function calculates the hourly min, max, and avg values from the five-minute data contained in the time_series
dataframe

Metric defined in document VM_Transmission Voltage Magnitude.docx
Parameters
* time_series (dataframe) — time series dataframe containing the five-minute data

* column_id (str)—the name of the dataframe column with contains the transmission voltage
data

* start_date (datetime) — the starting date and time when the calculations should take
place

* duration (int) — the duration in hours to calculate the ending date and time when the
calculations should take place

Returns
the calculated hourly min, max, and average values in a time series dataframe

Return type
dataframe

tesp_support.api.metrics_api.get_under_voltage_count (time_series, val_col_id, minimum_value)

Function calculates number of under-voltage violations during the year

Metric defined in VM_Count of Transmission Under-Voltage Violation Events.docx

5.3. tesp_support package 179

TESP Documentation, Release 1.0

Parameters
* time_series (dataframe) — dataframe containing a time series of transmission values
e val_col_id (str) — The id of the dataframe column where the transmission values are
located
* minimum_value (float) — The value that is to be used to compare transmission values
against

Returns
time series dataframe containing a column with the under voltage counts

Return type
dataframe

tesp_support.api.metrics_api.get_unserved_electric_load(supply_df, supply_col_id, demand_df,
demand_col_id, start_date_time)

Function calculates the demand that was not met by supply during the course of 8760 hours
Metric defined in document VM_Unserved Electric Load.docx

Parameters
» supply_df (dataframe) — hourly supply data per year

* supply_col_id (str)— name of the dataframe column where the supply data is located

» demand_df (dataframe) — hourly demand data per year
e demand_col_id (str) — name of the dataframe column where the demand data is located

* start_date_time (str) - the starting date and time when the calculation should start

Returns
time series dataframe containing the calculated unserved load data

Return type
dataframe

tesp_support.api.metrics_api.get_valuation(time_series, start_date, column_index)
Function calculates the average power generated by solar photovoltaic (PV) power generators aggregated by hour
of day.

Metric defined in document VM_Distribution of PV real power generation by hour.docx

Parameters

* time_series (dataframe) — dataframe containing the timeseries data to be used to calcu-
late the valuations

» start_date (datetime) — the starting date when the calculations will be started

* column_index (str) — the dataframe column id that is used to identify the location of the
values in the dataframe

Returns

function returns a tuple containing the dataframe containing the valuation
values as a time series, a float representing the 14th percentile of the values, and a float

representing the 86th percentile of the values

Return type
dataframe, float, float

180 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.metrics_api.get_wind_energy_production(time_series, prod_col_id, start_date_time,
duration)

Function calculates the amount of energy produced by wind at a feeder
Metric defined in document VM_Wind Energy Production.docx
Parameters

* time_series (dataframe) — time series dataframe that contains the 5-minute wind energy
production data

* prod_col_id (str)—name of the column where the wind energy production data is located
* start_date_time (str) - the starting date and time when the calculation should start
* duration (int) — the length of time in hours which the calculations should be executed

Returns
time series dataframe containing the calculated hourly total wind energy results

Return type
dataframe

tesp_support.api.metrics_api.synch_series(time_series, synch_interval, interval_unit)

Function synchronizes all the time series data frames in the time_series list, so they all have the same start and
ending times and the same number of times based upon a shared sampling interval

Parameters
e time_series (list<dataframe>) — time series dataframe
e synch_interval (int) — the size of the time intervals to be used in the time series

» interval_unit (str) — the unit of the time interval the time series is to be sampled “T”,
L‘H?’, ‘6S’7
Returns

time series dataframe containing the resampled data of the original

Return type
list<dataframe>
tesp_support.api.metrics_api.synch_series_lengths (time_series)
Function clips each of the time series in the time_series list so that each time series data frame has the same start
and ending times

Parameters
time_series (list<dataframe>)— List containing a set of pandas dataframes each represent-
ing a time series

Returns
a list containing the clipped time series data frames

Return type
list<dataframe>

tesp_support.api.metrics_api.synch_time_series(series_list, synch_interval, interval_unit)

Function resamples the time steps of the dataframes contained in the input data frame list to match the time
intervals specified in the inputs

Parameters

* series_list (1ist<dataframe>) — List containing a set of pandas dataframes each rep-
resenting a time series

5.3. tesp_support package 181

TESP Documentation, Release 1.0

» synch_interval (int) - the size of the time step which should be used to resample the
dataframe

* interval_unit (str)-the measurement unit of the interval to be sampled. The options for

ELINNTS EEINNTS

this function include the following options “nanoseconds”, “seconds”, “minutes”, “hours”,

EEINT3 LERT3

“days”, “months”, “years”

Returns
pandas dataframe time series containing the resampled columns of data

Return type
list<dataframe>

tesp_support.api.metrics_base_api module

tesp_support.api.metrics_base_api.adjust_date_time(start_date, offset_type, offset_val)
Function returns a date time object that is calculated by adding the offset_val to the entered start date
Parameters
e start_date — (datetime) the start date time

» offset_type (str) — defines what interval of time is to be used. The following identifiers

EEINNT3 EEINNT3 EEINNT3

can be used “years”, “months”, “days”, “hours”, “minutes”, “seconds”, “nanoseconds”

e offset_val (int) — the number of time intervals that are to be added to start_time

Returns
the modified date time

Return type
dataframe

tesp_support.api.metrics_base_api.check_dataframe_synchronization(data_frame_lI, data_frame_2)

Function checks that two time series dataframes are synchronized by comparing size, starting time, and ending
time of the data sets. If they are synchronized, the returns “Synchronized”. If they are not, then the function will

return an error message dependent upon what test failed.
Parameters
e data_frame_1 (dataframe) — time series dataframe
e data_frame_2 (dataframe) — time series dataframe

Returns
a “Synchronized” message if the two dataframes are synchronized, if not, the function returns an

€rror message

Return type
str

tesp_support.api.metrics_base_api.check_for_5_minute_data (time_series)

Function checks if the data in the time series is 5-minute intervals

Parameters
time_series (dataframe) — time series dataframe containing 5-minute data records

Returns
True if the data in the dataframe is 5-minute and False if it is not

Return type
bool

182 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.metrics_base_api.check_for_full_year_data(time_series)

Function checks if the input time series dataframe contains a full year’s worth of data

Parameters
time_series (dataframe) — time series dataframe containing a year’s worth of data

Returns
True if the time series contains a full year’s worth of data

Return type
bool

tesp_support.api.metrics_base_api.check_for_hourly_data(time_series)

Function checks if the data in the time series is hourly

Parameters
time_series (dataframe) — time series dataframe containing hourly data

Returns
True if the data in the dataframe is hourly and False if it is not hourly

Return type
bool

tesp_support.api.metrics_base_api.create_testing_dataframe (start_date, end_date, col_names,
time_interval)

Function creates a testing dataframe containing random values
Parameters
* start_date (str) — the starting date of the time series
* end_date (str) — then ending date of the time series

e col_names (list<string>) — the names to be used as the column headers in the resultant
dataframe

* time_interval (int) — frequency of time intervals. These designations are the same as
the designations used to define a pandas date_range e.g. “T”, “ST”, “H”, “12H”,...

Returns
time series dataframe containing random data values over the course of the defined time range

Return type
dataframe

tesp_support.api.metrics_base_api.get_accuracy_ratio(input_df, actual_index, simulated_index)
Function calculates the ratio of simulated data to actual data
Parameters

» input_df (dataframe) — time series dataframe containing data columns for actual and
simulated values

e actual_index (str) — column id where the actual data is located

e simulated_index (str) — column id where the simulated data is located

Returns
time series dataframe containing the calculated ratio values

Return type
dataframe

5.3. tesp_support package 183

TESP Documentation, Release 1.0

tesp_support.api.metrics_base_api.get_avg_column_value (time_series, val_index)

Function calculates the mean of the values in a data column of a dataframe
Parameters
* time_series (dataframe) — time series dataframe containing the data to be averaged
* val_index (str) — name of the column that contains the data to be averaged

Returns
calculated average value for the column identified in the function arguments

Return type
float

tesp_support.api.metrics_base_api.get_avg_data_value(time_series, column_id)

Function calculates the average of a column in the time series dataframe and returns the average value of the

column
Parameters
* time_series (dataframe) — time series dataframe containing the data to be averaged
e column_id (str) — name of the data column for which the average is to be calculated
Returns
calculated average for the identified dataframe column
Return type

float
tesp_support.api.metrics_base_api.get_column_total_value (time_series, column_id)
Function returns the sum of the values in a dataframe column
Parameters

e time_series (dataframe) — the time series dataframe which contains the data to be
summed

e column_id (str) — name of the column containing the values to be summed

Returns
the sum of the values contained in the identified dataframe column

Return type
float

tesp_support.api.metrics_base_api.get_max_column_value (time_series, val_index)

Function searches a designated column in the time series dataframe and returns the maximum value found in the

column
Parameters
* time_series (dataframe) — time series dataframe containing the data to be searched for
a maximum value
e val_index (str)—name of the column where the data is located to calculate the maximum
value
Returns
the maximum data value found in the designated column
Return type

float

184 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.metrics_base_api.get_min_column_value (time_series, val_index)

Function searches a designated column in the time series dataframe and returns the minimum value found in the

column
Parameters
* time_series (dataframe) — time series dataframe containing the data to be searched for
a minimum value
e val_index (str)— name of the column where the data is located to calculate the minimum
value
Returns
the minimum data value found in the designated column
Return type

dataframe

tesp_support.api.metrics_base_api.get_node_data(time_series, node_id, id_column_name)
Function queries the time series dataframe for the data set identified by the entered node id

Parameters
* time_series (dataframe) — time series dataframe contains the node data to be queried
* node_id (str) — the id of the node that is to be used in the query

e id_column_name (str)— name of the time series dataframe column that contains the node
ids to be queried against

Returns
time series dataframe containing data specific to a single node id

Return type
dataframe

tesp_support.api.metrics_base_api.get_node_ids (time_series, id_column_name)
Function queries a list of unique values from a time series dataframe based upon a column id entered by the user

Parameters
» time_series (dataframe) — time series dataframe that contains the values to be queried
e id_column_name (str) — name of the dataframe column where the values are located

Returns
list object containing the unique values found in the time series dataframe

Return type
list

tesp_support.api.metrics_base_api.get_time_series_average(time_series, start_date, duration)
Function calculates the average of each data column in the dataframe
Parameters
* time_series (dataframe) — time series dataframe containing the data to be averaged

» start_date (str) — the starting date and time that should be used in the calculation of the
averages

* duration (int) - the duration in hours that the averages should be calculated

Returns
dataframe containing the average value for each column in the input dataframe

5.3. tesp_support package 185

TESP Documentation, Release 1.0

Return type
dataframe

tesp_support.api.metrics_base_api.get_time_series_difference_values (time_series, column_id,
time_series2, column_id2)

Function calculates the difference between data in a column of a dataframe with the data in a column of a second

dataframe
Parameters
* time_series (dataframe) — time series dataframe containing a data set to be used in the
calculation
e column_id (str) — name of the column where the data to be used is located
* time_series2 (dataframe) — time series dataframe containing a data set to be used in the
calculation
¢ column_id2 (str)— name of the column where the data to be used is located
Returns

the total value difference calculated as time_series2 - time_series1

Return type
float

tesp_support.api.metrics_base_api.get_time_series_max_value_over (time_series, column_id,
compare_value)

Function calculates the maximum value out of the number of values in a dataframe column that are greater than
a comparison value

Parameters
* time_series (dataframe) — time series dataframe containing the data to be compared
e column_id (str) — the name of the column in the dataframe where the data is located
» compare_value (str) — the value the data is to be compared with

Returns
the maximum of the values that are greater than the compare value

Return type
int
tesp_support.api.metrics_base_api.get_time_series_max_value_under (time_series, column_id,
compare_value)

Function calculates the maximum value out of the number of values in a dataframe column that are less than a
comparison value

Parameters
* time_series (dataframe) — time series dataframe containing the data to be compared
e column_id (str) — the name of the column in the dataframe where the data is located
» compare_value (str) — the value the data is to be compared with

Returns
the maximum of the values that are less than the compare value

Return type
int

186 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.metrics_collector module

Utility functions for metrics collection within tesp_support, able to write to JSON and HDF5

class tesp_support.api.metrics_collector.MetricsCollector (start_time='1970-01-01 00:00:00")
Bases: object

Metrics collector base class that handles collecting and writing data to disk (.json).
start_time

the start time of the simulation

Type
pd.Timestamp

metrics_stores
list of MetricsStores holding/growing data

Type
list

classmethod factory(start_time='1970-01-01 00:00:00', write_hdf5=False)
Parameters
e start_time (str) — start time of simulation in datetime string format

* write_hdf5 (bool) - flag to determine if we write to .h5 (if True) or .json (if False;
defaults to this)

Returns
MetricsCollectorHDF or Base instance, depending on write_hdf5 flag

Return type
MetricsCollector

finalize_writing()
register_metrics_store (metrics_store)

Parameters
metrics_store (MetricsStore) — A store to be appended to our ongoing list
write_metrics()

Write all known metrics to disk (.json) and reset data within each metric.

class tesp_support.api.metrics_collector.MetricsCollectorHDF (start_time='1970-01-01 00:00:00")
Bases: MetricsCollector

finalize_writing()
write_metrics()
Write all known metrics to disk (.h5).

class tesp_support.api.metrics_collector.MetricsStore(name_units_pairs, file_string, collector)
Bases: object

This stores our metrics in appropriately sized tables, geared towards being ready to write to hdf5 (so writing to
json might take longer than if we kept things ready to write to json).

5.3. tesp_support package 187

TESP Documentation, Release 1.0

time_uid_pairs

an ongoing list of (time, uid) pairs incoming with data

Type

list
index_to_shapes

shapes of incoming column’s units

Type
list

file_string
the file path (barring extension) which will be appended with “_metrics.{h5, json}”

Type

str
collector

a common store for these metrics, to ease writing out all metrics/tables

Type
MetricsCollector

append_data(time, uid, *args)
Appends a single (time, uid) pair’s metrics to appropriate tables (depends on shape of each arg)

time (str or int): time in seconds after start of simulation uid (str or int or ?): unique identifier of
an object (e.g. a name) args (list): an list of length/order equal to name_units_pairs seen when
constructing this store

clear()
class tesp_support.api.metrics_collector.MetricsTable(columns, units)
Bases: object
append_data (data)
clear()
to_frame (times, uids, shape, filename="")
tesp_support.api.metrics_collector.deepish_copy (obj)

Faster approach to deepcopy, for an object of the simple python types. :param obj: original object to copy

Returns
copy of obj

Return type
object

tesp_support.api.metrics_collector.finalize_hdf (metrics_store)
tesp_support.api.metrics_collector.to_hdf (metrics_store, start_time, num_writes_counter)
This function writes the metric data to HDF?5 files (and clears the data)
Parameters
* metrics_store (MetricsStore) — a store containing metrics tables to dump to file

e start_time (pd. Timestamp) — start time of simulation times

188 Chapter 5. References

TESP Documentation, Release 1.0

e num_writes_counter (int) — interval counter

tesp_support.api.metrics_collector.to_json(metrics_store, start_time)

This function writes the metric data to JSON files (and clears the data) :param metrics_store: a store containing
metrics tables to dump to file :type metrics_store: MetricsStore :param start_time: start time of simulation times
:type start_time: pd.Timestamp

tesp_support.api.model_GLM module
tesp_support.api.modify_ GLM module
tesp_support.api.parse_helpers module

tesp_support.api.parse_helpers.parse_helic_input(arg)
Helper function to find the magnitude of a possibly complex number from Helics as a string

Parameters
arg (str) — The Helics value

Returns
the parsed number, or O if parsing fails

Return type
float

tesp_support.api.parse_helpers.parse_kva(arg)
Parse the kVA magnitude from GridLAB-D P+jQ volt-amperes in rectangular form

Parameters
arg (str) — the GridLAB-D P+jQ value

Returns
the parsed kva value

Return type
float

tesp_support.api.parse_helpers.parse_kva_old(arg)
Parse the kVA magnitude from GridLAB-D P+jQ volt-amperes in rectangular form

Parameters
arg (str) — the GridLAB-D P+jQ value

Returns
the parsed kva value

Return type
float

tesp_support.api.parse_helpers.parse_kw(arg)
Parse the kilowatt load of a possibly complex number from FNCS

Parameters
arg (str) — the FNCS string value

Returns
the parsed number in kW, or 0 if parsing fails

5.3. tesp_support package 189

TESP Documentation, Release 1.0

Return type
float

tesp_support.api.parse_helpers.parse_magnitude(arg)
Parse the magnitude of a possibly complex number from FNCS

Parameters
arg (str) — the FNCS string value

Returns
the parsed number, or 0 if parsing fails

Return type
float

tesp_support.api.parse_helpers.parse_magnitude_1(arg)

Parse the magnitude of a possibly complex number from FNCS

Parameters
arg (str) — the FNCS string value

Returns
the parsed number, or 0 if parsing fails

Return type
float

tesp_support.api.parse_helpers.parse_magnitude_2 (arg)
Helper function to find the magnitude of a possibly complex number from FNCS

Parameters
arg (str) — The FNCS value

Returns
the parsed number, or O if parsing fails

Return type
float

tesp_support.api.parse_helpers.parse_mva(arg)
Helper function to parse P+jQ from a FNCS value

Parameters
arg (str) — FNCS value in rectangular format

Returns
P [MW] and Q [MVAR]

Return type
float, float

tesp_support.api.parse_helpers.parse_number (arg)

Parse floating-point number from a FNCS message; must not have leading sign or exponential notation

Parameters
arg (str) — the FNCS string value

Returns
the parsed number

Return type
float

190 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.player module

tesp_support.api.player.load_player_loop (casename, keyName)

tesp_support.api.player.make_player (data_path)

Parameters

name (str) — name of the player

prefix (str) — the prefix for the file prefix_player.json name and the federate prefix_player
name

vals_rows (int) — number of rows in the file

power_factor (float) — power factor a load file, O for generator file
dt_load_collector (int) — interval between rows

date_time_str (str) — date and time “YYYY-MM-DD HH:MM:SS”

data_path (str) - the data file to be published

output (bool) — If true the player outputs data given at the dt_load_collector interval
output_hist (bool) - If true the player outputs data history

load (bool) — If true this a load player, else a generator player

Return type

dict

tesp_support.api.process_eplus module

Functions to plot data from the EnergyPlus agent

Public Functions:

process_eplus
Reads the data and metadata, then makes the plots.

tesp_support.api.process_eplus.plot_eplus(diction, title=None, save_file=None, save_only=False)

tesp_support.api.process_eplus.process_eplus(name_root, title=None, save_file=None,

save_only=False)

Plots the min and max line-neutral voltages for every billing meter

This function reads eplus_[name_root]_metrics.json for both metadata and data. This must exist in the current
working directory. One graph is generated with 3 subplots:

1. Cooling system setpoint, actual temperature and the difference between them.

2. Heating system setpoint, actual temperature and the difference between them.

3. Price that the building controller responded to.

Parameters

name_root (str)—name of the TESP case, not necessarily the same as the EnergyPlus case,
without the extension

» title (str) - supertitle for the page of plots.

5.3. tesp_support package 191

TESP Documentation, Release 1.0

» save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script

waits for user keypress.

tesp_support.api.process_eplus.read_eplus_metrics(path, name_root, quiet=False)

tesp_support.api.process_gld module

Functions to plot data from GridLAB-D
Public Functions:

process_gld
Reads the data and metadata, then makes the plots.

tesp_support.api.process_gld.plot_gld(diction, save_file=None, save_only=False)

tesp_support.api.process_gld.process_gld(name_root, diction_name="", save_file=None,
save_only=False)

Plots a summary/sample of power, air temperature and voltage

This function reads substation_[name_root]_metrics.json, billing_meter_[name_root]_metrics.json and
house_[name_root]_metrics.json for the data; it reads [name_root]_gim_dict.json for the metadata. These must
all exist in the current working directory. Makes one graph with 4 subplots:

1. Substation real power and losses

2. Average air temperature over all houses

3. Min/Max line-to-neutral voltage and Min/Max line-to-line voltage at the first billing meter
4

. Min, Max and Average air temperature at the first house

Parameters

* name_root (str) — name of the TESP case, not necessarily the same as the GLM case,
without the extension

* diction_name (str)— metafile name (with json extension) for a different GLM dictionary,
if it’s not [name_root]_glm_dict.json. Defaults to empty.

» save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script
waits for user keypress.

tesp_support.api.process_gld.read_gld_metrics(path, name_root, diction_name="")

192 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.process_houses module

Functions to plot house data from GridLAB-D
Public Functions:

process_houses
Reads the data and metadata, then makes the plot.

tesp_support.api.process_houses.plot_houses (diction, save_file=None, save_only=False)

tesp_support.api.process_houses.process_houses (name_root, diction_name=", save_file=None,
save_only=True)

Plots the temperature and HVAC power for every house

This function reads substation_[name_root]_metrics.json and house_[name_root]_metrics.json for the data; it
reads [name_root]_glm_dict.json for the metadata. These must all exist in the current working directory. Makes
one graph with 2 subplots:

1. Average air temperature at every house

2. Average HVAC power at every house

Parameters

* name_root (str) — name of the TESP case, not necessarily the same as the GLM case,
without the extension

* diction_name (str)— metafile name (with json extension) for a different GLM dictionary,
if it’s not [name_root]_glm_dict.json. Defaults to empty.

* save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script

waits for user keypress.

tesp_support.api.process_houses.read_houses_metrics(path, name_root, diction_name="")

tesp_support.api.process_inv module

Functions to plot inverter and volt-var data from GridLAB-D, for NIST TE Challenge 2
Public Functions:

process_inv
Reads the data and metadata, then makes the plots.

tesp_support.api.process_inv.plot_inv(diction, save_file=None, save_only=False)

tesp_support.api.process_inv.process_inv(name_root, diction_name="", title=None, save_file=None,
save_only=False)

Plots inverter and volt-var data for the NIST TE Challenge 2 / IEEE 8500 examples

This function reads substation_[name_root]_metrics.json, billing_meter_[name_root]_metrics.json, capaci-
tor_[name_root]_metrics.json, regulator_[name_root]_metrics.json, house_[name_root]_metrics.json and in-
verter_[name_root]_metrics.json for the data; it reads [name_root]_glm_dict.json for the metadata. If possible,
itreads precool_[name_root]_metrics.json for temperature deviation. These must all exist in the current working
directory. One graph is generated with 10 subplots:

5.3. tesp_support package 193

TESP Documentation, Release 1.0

—_—

e A AN e B

-
e

Average P and Q over all inverters

Min, Max and Average line-neutral voltage over all billing meters

Average air temperature over all houses

Average temperature deviations from the setpoint over all houses

Total of ANSI C84 A and B range violation counts, summing over all billing meters

Total of ANSI C84 A and B range violation durations, summing over all billing meters
Substation total power, losses, house power, house HVAC power and house waterheater power
The accumulated bill, summed over all billing meters

The accumulated capacitor switching counts for each of 4 capacitor banks, if found, as in the IEEE 8500
case

The accumulated regulator counts for each of 4 voltage regulators, if found, as in the IEEE 8500 case

Parameters

* name_root (str) — name of the TESP case, not necessarily the same as the GLM case,
without the extension

* diction_name (str)— metafile name (with json extension) for a different GLM dictionary,
if it’s not [name_root]_glm_dict.json. Defaults to empty.

e title (str)

» save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script
waits for user keypress.

tesp_support.api.process_inv.read_inv_metrics(path, name_root, diction_name="")

tesp_support.api.process_pypower module

Functions to plot bus and generator data from PYPOWER

Public Functions:

process_pypower
Reads the data and metadata, then makes the plots.

tesp_support.api.process_pypower.plot_pypower (diction, title=None, save_file=None, save_only=False)

tesp_support.api.process_pypower.process_pypower (name_root, title=None, save_file=None,

save_only=True)

Plots bus and generator quantities for the 9-bus system used in te30 or sgipl examples

This function reads bus_[name_root]_metrics.json and gen_[name_root]_metrics.json for the data, and
[name_root]_m_dict.json for the metadata. These must all exist in the current working directory. One graph
is generated with 8 subplots:

1. Bus P and Q demands, at the single GridLAB-D connection

2. Bus P and Q locational marginal prices (LMP), at the single GridLAB-D connection

3. Bus Vmin, Vmax and Vavg, at the single GridLAB-D connection

194

Chapter 5. References

TESP Documentation, Release 1.0

All 4 generator prices
Generator 1 P and Q output
Generator 2 P and Q output

Generator 3 P and Q output

® N ok

Generator 4 P and Q output

Parameters

* name_root (str) — file name of the TESP case, not necessarily the same as the PYPOWER
case, w/out the JSON extension

* title (str) — supertitle for the page of plots.

» save_file (str)— name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script
waits for user keypress.

tesp_support.api.process_pypower.read_pypower_metrics(path, name_root)

tesp_support.api.process_voltages module

Functions to plot all billing meter voltages from GridLAB-D
Public Functions:

process_voltages
Reads the data and metadata, then makes the plot.

tesp_support.api.process_voltages.plot_voltages(diction, save_file=None, save_only=False)

tesp_support.api.process_voltages.process_voltages (name_root, diction_name=", save_file=None,
save_only=True)

Plots the min and max line-neutral voltages for every billing meter

This function reads substation_[name_root]_metrics.json and billing_meter_[name_root]_metrics.json for the
voltage data, and [name_root]_glm_dict.json for the meter names. These must all exist in the current working
directory. One graph is generated with 2 subplots:

1. The Min line-to-neutral voltage at each billing meter

2. The Max line-to-neutral voltage at each billing meter

Parameters

* name_root (str) — name of the TESP case, not necessarily the same as the GLM case,
without the extension

e diction_name (str)— metafile name (with json extension) for a different GLM dictionary,
if it’s not [name_root]_glm_dict.json. Defaults to empty.

» save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

* save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script
waits for user keypress.

5.3. tesp_support package 195

TESP Documentation, Release 1.0

tesp_support.api.process_voltages.read_voltages_metrics(path, name_root, diction_name="")

tesp_support.api.schedule_client module

Client class used by entities to access schedule server

The schedule server was implemented to reduce the memory footprint of large co-simulations with many entities read-
ing in identical data files; see file docstring of “schedule_server.py” for further details. This class is intended to be
instantiated in every software entity that needs to access the data provided by the schedule server.

class tesp_support.api.schedule_client.DataClient (port)
Bases: object

tesp_support.api.schedule_server module
tesp_support.api.store module

Path and Data functions for use within tesp_support, including new agents.

class tesp_support.api.store.Directory (file, description=None)
Bases: object

get_includeDirs()
get_includeFiles (path)
set_includeDir (path, recurse=False)
set_includeFile(path, mask)
toJSONQ)

zip (zipfile)

class tesp_support.api.store.Schema (file, name=None, description=None)
Bases: object

get_columns (table, skip_rows=0)

get_date (table)

get_series_data(table, start, end, usecols=None, index_col=None)
get_tables()

set_date_bycol (table, name)

set_date_byrow(table, start, interval)

toJSONQ)

class tesp_support.api.store.Store(file)
Bases: object

add_directory (directory)

196 Chapter 5. References

TESP Documentation, Release 1.0

add_file(path, name=", description="")

add_path(path, description="")

add_schema (scheme)

del_directory(name)

del_schema(name)

get_directory(name)

get_schema (name=None)

read()

write()

zip(O
tesp_support.api.store.test_hdf5()

tesp_support.api.store.unzip(file, path)

This function unzip take name add .zip and unzip the file to specified path. Then finds the store json in that path
and fixes the relative path for the stores work

tesp_support.api.substation module

Manages the simple_auction and hvac agents for the te30 and sgipl examples
Public Functions:

substation_loop
initializes and runs the agents

Todo:
 Getting an overflow error when killing process - investigate whether that happens if simulation runs to completion
¢ Allow changes in the starting date and time; now it’s always midnight on July 1, 2013

* Allow multiple markets per substation, e.g., S-minute and day-ahead for the DSO+T study

tesp_support.api.test_runner module

Auto test runner for TESP run* cases Runs a test case based on pre-existing shell script file.

If FNCS or HELICS broker exist the test waits for the broker process to finish before function returns.

This code has limited functionality as the ‘run*’ scripts for the examples are written in a very specified way.
tesp_support.api.test_runner.block_test(call)

tesp_support.api.test_runner.docker_line(line, local_vars)

tesp_support.api.test_runner.exec_test(file_name, case_name=None)

5.3. tesp_support package 197

TESP Documentation, Release 1.0

tesp_support.api.test_runner.init_tests()
tesp_support.api.test_runner.process_line(line, local_vars)
tesp_support.api.test_runner.report_tests()
tesp_support.api.test_runner.run_docker_test (file_name, case_name=None)
tesp_support.api.test_runner.run_test(file_name, case_name=None)
tesp_support.api.test_runner.services(name, image, env, cnt, outfile, depends=None)

tesp_support.api.test_runner.start_test(case_name=None)

tesp_support.api.time_helpers module

Utility time functions for use within tesp_support, including new agents.

tesp_support.api.time_helpers.add_hhmm_secs(hhmm, secs)

Add hhmm time + seconds duration
Parameters
* hhmm (float) - HHMM
e secs (int) — seconds

Returns
hhmm-+secs in hhmm format

tesp_support.api.time_helpers.get_dist(mean, var)

Get a random number from a distribution given mean and Yovariability
Parameters
e mean (float) — mean of distribution
* var (float) — Y variability

Returns
one random entry from distribution

Return type
float

tesp_support.api.time_helpers.get_duration(arrival, leave)

Convert arrival and leaving time to duration
Parameters
e arrival (float) - in HHMM format
e leave (float) — in HHMM format

Returns
duration in seconds

Return type
int

198 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.time_helpers.get_hhmm_from_secs (fime)
Convert seconds to HHMM

Parameters
time (int) — seconds

Returns
HHMM

Return type
int

tesp_support.api.time_helpers.get_secs_from_hhmm(zime)
Convert HHMM to seconds

Parameters
time (float) - HHMM

Returns
seconds

Return type
int
tesp_support.api.time_helpers.is_hhmm_valid(time)
Check if HHMM is a valid number

Parameters
time (float) — HHMM format

Returns
true if valid or false if not

Return type
bool

tesp_support.api.time_helpers.subtract_hhmm_secs (hhmm, secs)
Subtract hhmm time - secs duration

Parameters
e hhmm (float) — HHMM format time
e secs (int) — seconds

Returns
arrival time in HHMM

tesp_support.api.tso_ PYPOWER module

PYPOWER solutions under control of HELICS for te30 and dsot, sgipl examples
Public Functions:

pypower_loop
Initializes and runs the simulation.

5.3. tesp_support package

199

TESP Documentation, Release 1.0

tesp_support.api.tso_helpers module

Helpers for PYPOWER, PSST, MOST solutions

Public Functions:
print_matrix, print_keyed_matrix, load_json_case, print_mod_load,
dist_slack

tesp_support.api.tso_helpers.dist_slack(mpc, prev_load)

Parameters
* mpc (dict) - PYPOWER case structure
» prev_load (float) — previous load

Returns
generator loads

Return type
array

tesp_support.api.tso_helpers.load_json_case(file_name)
Helper function to load PYPOWER case from a JSON file

Parameters
file_name (str) — the JSON file name to open

Returns
the loaded PYPOWER case structure

Return type
dict

tesp_support.api.tso_helpers.make_dictionary(mpc)

summarize_opf,

Helper function to write the JSON model dictionary metafile for post-processing

Additions to DSO, and Pnom==>Pmin for generators are there

Parameters
mpc (dict) - PYPOWER case file structure based on matpower

tesp_support.api.tso_helpers.print_keyed_matrix(/bl, D, fmt="{:8.4f}")

tesp_support.api.tso_helpers.print_m_case(ppc, ppc_case)

tesp_support.api.tso_helpers.print_matrix(/bl, A, fimt="{:8.4f}")

tesp_support.api.tso_helpers.print_mod_load(bus, dso, model_load, msg, ts)

tesp_support.api.tso_helpers.summarize_opf (mpc)

Helper function to print optimal power flow solution (debugging)

Parameters
mpc (dict) — solved using PYPOWER case structure

make_dictionary,

200

Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.api.tso_psst module

tesp_support.api.tso_psst.make_generator_plants(ppc, renewables)

tesp_support.consensus package

Transactive Energy Simulation Platform (TESP) Contains the python files for the Consensus analysis

Submodules
tesp_support.consensus.case_merge module

Combines GridLAB-D and agent files to run a multi-feeder TESP simulation
Public Functions:

merge_glm
combines GridLAB-D input files

merge_glm_dict
combines GridLAB-D metadata files

merge_agent_dict
combines the substation agent configuration files

merge_substation_yaml
combines the substation agent FNCS publish/subscribe files

merge_fncs_config
combines GridLAB-D FNCS publish/subscribe files

tesp_support.consensus.case_merge.merge_agent_dict (target, sources)

Combines the substation agent configuration files into “target”. The source files must already exist.
Parameters
* target (str) — the path to the target JSON file, including the name of the file
* sources (1ist) — list of feeder names in the target directory to merge

tesp_support.consensus.case_merge .merge_£fncs_config(target, dso, sources)

Combines GridLAB-D input files into “target”. The source feeders must already exist.
Parameters
* target (str) — the path to the target TXT file, including the name of the file
e dso (str)—dsoid
» sources (1ist) — list of feeder names in the target directory to merge

tesp_support.consensus.case_merge.merge_glm(rarget, sources, xfmva)

Combines GridLAB-D input files into “target”. The source files must already exist.
Parameters
* target (str) — the path to the target GLM file, including the name of the file
* sources (1ist) — list of feeder names in the target directory to merge

o xfmva (int)

5.3. tesp_support package 201

TESP Documentation, Release 1.0

tesp_support.consensus.case_merge.merge_glm_dict (target, sources, xfmva)
Combines GridLAB-D metadata files into “target”. The source files must already exist.

The output JSON won’t have a top-level base_feeder attribute. Instead, the base_feeder from each source file
will become a feeder key in the output JSON feeders dictionary, and then every child object on that feeder will
have its feeder_id, originally network_node, changed to match the base_feeder.

Parameters
* target (str) — the path to the target JSON file, including the name of the file
* sources (1ist) — list of feeder names in the target directory to merge
o xfmva (int)

tesp_support.consensus.case_merge.merge_substation_yaml (target, sources)
Combines GridLAB-D input files into “target”. The source files must already exist.

Parameters
* target (str) — the path to the target YAML file, including the name of the file

* sources (1ist) — list of feeder names in the target directory to merge

tesp_support.consensus.dg_agent module

Manages the Transactive Control scheme for DSO+T implementation version 1
Public Functions:

substation_loop
initializes and runs the agents

tesp_support.consensus.dg_agent .destroy_federate (fed)
tesp_support.consensus.dg_agent.inner_substation_loop (configfile, metrics_root, with_market)
Helper function that initializes and runs the DSOT agents

TODO: This needs to be updated Reads configfile. Writes auction_metrics_root_metrics.json and con-
troller_metrics_root_metrics.json upon completion.

Parameters
» configfile (str) — fully qualified path to the JSON agent configuration file
* metrics_root (str) — base name of the case for metrics output
* with_market (bool) — flag that determines if we run with markets
tesp_support.consensus.dg_agent.register_federate (json_filename)
tesp_support.consensus.dg_agent.substation_loop (configfile, metrics_root, with_market=True)
Wrapper for inner_substation_loop
When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

tesp_support.consensus.dg_agent.worker (arg)

202 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.consensus.dso_agent module

Manages the Transactive Control scheme for DSO+T implementation version 1
Public Functions:

substation_loop
initializes and runs the agents

tesp_support.consensus.dso_agent.destroy_federate (fed)
tesp_support.consensus.dso_agent.inner_substation_loop (configfile, metrics_root, with_market)
Helper function that initializes and runs the DSOT agents

TODO: This needs to be updated Reads configfile. Writes auction_metrics_root_metrics.json and con-
troller_metrics_root_metrics.json upon completion.

Parameters
» configfile (str) - fully qualified path to the JSON agent configuration file
* metrics_root (str) — base name of the case for metrics output
» with_market (bool) — flag that determines if we run with markets
tesp_support.consensus.dso_agent.register_federate (json_filename)
tesp_support.consensus.dso_agent.substation_loop (configfile, metrics_root, with_market=True)
Wrapper for inner_substation_loop
When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

tesp_support.consensus.dso_agent.worker (arg)

tesp_support.consensus.dso_market module

Class that manages the operation of DSO agent

Functionalities include: Aggregate demand bids from different substations; Wholesale no da trial clearing; Conversion
between wholesale price and retail price; Generate substation supply curves with and without consideration of the
transformer degradation.

class tesp_support.consensus.dso_market.DSOMarket (dso_dict, key)

Bases: object
This agent manages the DSO operating
Parameters
* dso_dict
e key
name
name of the DSO agent
Type

str

5.3. tesp_support package 203

TESP Documentation, Release 1.0

price_cap
the maximum price that is allowed in the market, in $/kWh

Type

float
num_samples
the number of sampling points, describes how precisely the curve is sampled

Type
int

windowLength
length of the planning horizon for the DA market, in hours
Type
int
DS0_Q_max
maximum limit of the DSO load capacity, in kWh

Type
float

transformer_degradation

flag variable, equals to 1 when transformer degradation effect is taken into account

Type
bool

curve_a
array of second order coefficients for the wholesale node curve, indexed by day_of_sim and hour_of_day

Type
array

curve_b

array of first order coeflicients of the wholesale node curve, indexed by day_of_sim and hour_of_day

Type

array
curve_c
array of intercepts of the wholesale node curve, indexed by day_of_sim and hour_of_day

Type
array

Pwclear_RT

cleared wholesale price by real-time wholesale node trial clearing, in $/kWh

Type
float

Pwclear_DA

list of cleared wholesale price by day-ahead wholesale node trial clearing, in $/kWh, indexed by hour

Type

list

204 Chapter 5. References

TESP Documentation, Release 1.0

trial_cleared_quantity_RT
trial cleared quantity by real-time wholesale node trial clearing, in kWh

Type

float

trial_cleared_quantity_DA
trial cleared quantity by day-ahead wholesale node trial clearing, in kWh
Type
list
curve_DSO_RT
aggregated demand curve at DSO level from real-time retail market
Type

Curve
curve_DSO_DA
dictionary of aggregated demand curves at DSO level from day-ahead retail market, indexed by hour
Type
dict
curve_ws_node
dictionary of wholesale node curves, indexed by day_of_sim and hour_of_day
Type
dict
trial_clear_type_RT
trial cleared type of real-time wholesale node trial clearing

Type
int

trial_clear_type_DA
trial cleared type of day-ahead wholesale node trial clearing, indexed by hour
Type
list
hour_of_day
current hour of the day

Type
int

day_of_week

current day of the week

Type
int

customer_count_mix_residential

Residential percentage of the total customer count mix
number_of_gld_homes

Total number of GLD homes for the DSO

5.3. tesp_support package 205

TESP Documentation, Release 1.0

clean_bids_DA(Q)

Initialize the day-ahead wholesale node trial clearing

clean_bids_RT()

Initialize the real-time wholesale node trial clearing

curve_aggregator_DSO_DA(demand_curve_DA, Q_max)

Function used to aggregate the substation-level DA demand curves into a DSO-level DA demand curve
Parameters
¢ demand_curve_DA (dict)—a collection of demand curves to be aggregated for day-ahead
* Q_max (float) — maximum capacity of the substation, in kW

curve_aggregator_DSO_RT (demand_curve_RT, Q_max)

Function used to aggregate the substation-level RT demand curves into a DSO-level RT demand curve
Parameters
¢ demand_curve_RT (Curve) — demand curve to be aggregated for real-time
* Q_max (float)— maximum capacity of the substation, in kW

curve_preprocess (substation_demand_curve, Q_max)

An internal shared function called by curve_aggregator_DSO_RT and curve_aggregator_DSO_DA

functions to truncate) L
the substation demand curve before aggregation as well as convert the retail prices into wholesale

prices

Parameters
¢ substation_demand_curve (Curve) — substation demand curve to be preprocessed
¢ Q_max (float)— maximum capacity of the substation, in kW

Returns
preprocessed demand curve

Return type

preprocessed_curve (curve)

generate_TOC(costInterval, maxPulLoad, num_samples, TOC_dict)

Function used to calculate the total owning cost of transformer
Parameters
¢ costInterval (int) - interval for calculating the cost, in minutes
¢ maxPuload (float) — maximum pu loading factor
e num_samples (int) — number of sampling points
e TOC_dict (dict) — configuration parameters for transformer

Returns
price axis of unit owning cost, in $/kWh LoadsForPlot (list): quantity axis of unit owing cost,
in kWh

Return type
DollarsForPlot (list)

206 Chapter 5. References

TESP Documentation, Release 1.0

retail_rate(Pw)

Function used to convert the wholesale prices into retail prices

Parameters
Pw (float) — wholesale price, in $/kWh

Returns
retail price, in $/kWh

Return type
Pr (float)

retail_rate_inverse(Pr)

Function used to convert the retail prices into wholesale prices

Parameters
Pr (float) — retail price, in $/kWh

Returns
wholesale price, in $/kWh

Return type
Pw (float)

set_Pwclear_DA(hour_of day, day_of _week)

Function used to implement the DA trial wholesale node clearing and update the Pwclear_DA value
Parameters
e hour_of_day (int) — current hour of the day
¢ day_of_week (int) — current day of the week
set_Pwclear_RT (hour_of day, day_of week)
Function used to implement the RT trial wholesale node clearing and update the Pwclear_RT value
Parameters
* hour_of_day (int) — current hour of the day
¢ day_of_week (int) — current day of the week

set_cleared_q_da(val)
Set the clear quantity for day ahead

Parameters
val (double) — Imp for the bus/substation

set_cleared_qg_rt (val)

Set the clear quantity for real time

Parameters
val (double) — Imp for the bus/substation

set_ind_load (industrial_load)

Set the industrial load based on provided load by a csv file after base-case, complex number

Parameters
industrial_load (str) — industrial load of substation

set_ind_load_da (industrial_load_da)

Set the ercot ind load for the next 24-hours provided load by a csv file after base-case, complex number

5.3.

tesp_support package 207

TESP Documentation, Release 1.0

Parameters
industrial_load_da (24 x 1 array of double) — industry load values for the next
day ahead are given in MW

set_lmp_da(val)

Set the Imp for day ahead

Parameters
val (array of double)— Imp for the day ahead

set_lmp_rt(val)

Set the Imp for real time

Parameters
val (double) — Imp for the bus/substation

set_ref_load(ref load)

Set the reference (ercot) load based on provided load by a csv file after base-case, complex number

Parameters
ref_load (str) — total load of substation

set_ref load_da(ref _load_da)

Set the ercot load for the next 24-hours provided load by a csv file after base-case, complex number

Parameters
ref_load_da (24 x 1 array of double) - ercot load values for the next day ahead

set_total_load (roral load)

Set the residential load based on provided load by GLD, complex number

Parameters
total_load (str) — total load of substation

substation_supply_curve_DA (retail_obj)

Function used to generate the DA supply curves for each substation
Args:

Variables:

FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder
peak demand price, in $/kWh FeederCongCapacity (float): feeder congestion capacity, in kWh Feed-
erPkDemandCapacity (float): feeder peak demand, in kWh Q_max_retail (float): substation limit, in
kWh Q_max_DSO (float): can change when the demand bid is higher than the original DSO limit
maxPuloading (float): maximum pu loading factor TOC_dict (dict): configuration parameters for
transformer

Returns
a collection of substation supply curves for day-ahead market clearing

Return type
supply_curve_DA (list)

substation_supply_curve_RT (retail_obj)

Function used to generate the RT supply curve for each substation
Args:

Variables:

FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder

208

Chapter 5. References

TESP Documentation, Release 1.0

peak demand price, in $/kWh FeederCongCapacity (float): feeder congestion capacity, in kWh Feed-
erPkDemandCapacity (float): feeder peak demand, in kWh Q_max_retail (float): substation limit, in
kWh Q_max_DSO (float): can change when the demand bid is higher than the original DSO limit
maxPuLoading (float): maximum pu loading factor TOC_dict (dict): configuration parameters for
transformer

Returns

substation supply curve for real-time market clearing
Return type

supply_curve_RT (curve)

supply_curve (Prclear, FeederCongCapacity, FeederPkDemandCapacity, num_samples, Q_max,
maxPuLoading, TOC_dict)

An internal shared function called by substation_supply_curve_RT and substation_supply_curve_DA func-
tions to generate the supply curve when considering the transformer degradation

Parameters

e Prclear (float) —retail price overted from wholesale price obtained from trial wholesale
node clearing, in $/kWh

* FeederCongCapacity (float) — feeder congestion capacity, in kWh

¢ FeederPkDemandCapacity (float) — feeder peak demand, in kWh

e num_samples (int) — number of sampling points

¢ Q_max (float) — substation limit, in kWh

¢ maxPuloading (float) — maximum pu loading factor

» TOC_dict (dict) — configuration parameters for transformer
Variables:

FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder peak
demand price, in $/kWh

Returns
quantity sampling of the supply curve, in kWh SupplyPrices (list): prices sampling of the
supply curve, in $/kWh

Return type
SupplyQuantities (list)
test_function()
Test function with the only purpose of returning the name of the object

trial_wholesale_clearing(curve_ws_node, curve_DSO)

An internal shared function called by set_Pwclear_RT and
set_Pwclear_DA functions to implement the trial wholesale node clearing
Parameters

e curve_ws_node (Curve) — wholesale node curve

e curve_DSO (Curve) — aggregated demand curve at DSO level

5.3.

tesp_support package 209

TESP Documentation, Release 1.0

Returns
cleared price, in $/kWh cleared_quantity(float): cleared quantity, in kWh trial_clear_type
(int): clear type

Return type
Pwclear (float)

update_wholesale_node_curve()

Update the wholesale node curves according to the most updated curve coefficients, may be updated every
day

tesp_support.consensus.dso_market.test()

tesp_support.consensus.forecasting module

Class responsible for forecasting
Implements the substation level DA price forecast and load forecast

class tesp_support.consensus.forecasting.Forecasting
Bases: object

This Class perform the forecast
Parameters
» TODO (#) — update inputs
» TODO - Load base case run files
TODO

update attributes

add_skew_scalar (datafr, N_skew, N_scalar)
Skew the values with given seconds and multiply by scalar in the whole year dataframe

Args: datafr (DataFrame): dataframe created with the schedule name for a year N_skew (int): number of
seconds to skew either (+ or -)

calc_solar_flux(cpt, day_of yr, lat, sol_time, dnr_i, dhr_i, vertical_angle)
calc_solargain(day_of yr, time, dnr, dhr, lat, lon, tz_offset)

forecasting_schedules (datafr, time)

Returns windowlength values of given time as forecating :param datafr: schedule dataframe used to forecast
:param time: current time at which DA optimization occurs

get_internal_gain_forecast (skew_scalar, time)

Forecast the electric zip_load and internal gain of all zip loads of a house by reading schedule files
and applying skew. Forecast is for 48 hours ahead from start time :param skew_scalar: dictionary con-
taining ‘zip_skew’, ‘zip_scalar’ and ‘zip_heatgain_fraction’ for each zip load :type skew_scalar: dict
:param ‘zip_skew’ is a scalar and same for all type of zip loads for the given house. ‘zip_scalar’ and
‘zip_heatgain_fraction’: :param are dictionary containing different values for each type of zip load: :param
time: Datetime format: forecast start time :type time: datetime

Returns
48 values of total zip loads and total internal gain due to zip loads

Return type
list

210 Chapter 5. References

TESP Documentation, Release 1.0

get_solar_gain_forecast (climate_conf, current_time)
get_substation_unresponsive_industrial_load_forecast (peak_load=3500.0)
Get substation unresponsive industrial load forecast
Args:
peak_load (float): peak load in kWh
Returns
forecast of next 48-hours unresponsive load
Return type
base_run_load (float x 48)

get_substation_unresponsive_load_forecast (peak_load=7500.0)
Get substation unresponsive load forecast

TODO: Update to model that make use of the base case run files TODO: Get weather forecast from weather

agent
Parameters
peak_load (float) — peak load in kWh
Returns
forecast of next 48-hours unresponsive load
Return type

base_run_load (float x 48)
get_waterdraw_forecast (skew_scalar, time)
static initialize_schedule_dataframe(start_time, end_time)
Initialize the data frame for one year
Parameters
e start_time (datetime, str) - time in str format - DD/MM/YYY HH:MT:SS
e end_time (datetime, str)- time in str format - DD/MM/YYY HH:MT:SS

make_dataframe_schedule (filename, schedule_name)

Reads .glm files with multiple schedule names and makes dataframe for a year for given schedule name
Parameters
¢ filename (str) — name of glm file to be loaded
¢ schedule_name (str) — name of the schedule to be laoded

set_retail_price_forecast(DA_SW_prices)

Set substation price forecast
Nonsummable diminishing.

Parameters
DA_SW_prices (float x 48) — cleared price in $/kWh from the last shifting window run

Returns
forecasted prices in $/kWh for the next 48-hours

Return type
forecasted_price (float x 48)

5.3. tesp_support package 211

TESP Documentation, Release 1.0

set_sch_year (year)

set_solar_diffuse_forecast (fincs_str)

Set the 48 hour solar diffuse forecast :param solar_diffuse_forecast: :type solar_diffuse_forecast: [float x
48]

set_solar_direct_forecast (fncs_str)

Set the 48 hour solar direct forecast :param solar_direct_forecast: :type solar_direct_forecast: [float x 48]

tesp_support.consensus.generator module

tesp_support.consensus.generator.Consenus_dist_DA(dso_market_obj, DA_horizon, fed, hour_of day,
time_granted, time_market_DA_complete)

tesp_support.consensus.generator.Consenus_dist_RT (dso_market_obj, fed, hour_of_day, time_granted,
time_market_RT_complete)

tesp_support.consensus.generator.construct_Laplacian(N_agents)

tesp_support.consensus.glm_dictionary module

Functions to create metadata from a GridLAB-D input (GLM) file

Metadata is written to a JSON file, for convenient loading into a Python dictionary. It can be used for agent con-
figuration, e.g., to initialize a forecasting model based on some nominal data. It’s also used with metrics output in
post-processing.

Public Functions:

glm_dict
Writes the JSON metadata file.

tesp_support.consensus.glm_dictionary.append_include_f£file (lines, fname)
tesp_support.consensus.glm_dictionary.ercotMeterName (objname)

Enforces the meter naming convention for ERCOT

Replaces anything after the last _ with mtr.

Parameters
objname (str) — the GridLAB-D name of a house or inverter

Returns
The GridLAB-D name of upstream meter

Return type
str

tesp_support.consensus.glm_dictionary.glm_dict_with_microgrids(name_root, config=None,
ercot=Fualse)
Writes the JSON metadata file from a GLM file
This function reads name_root.glm and writes [name_root]_glm_dict.json The GLM file should have some me-

ters and triplex_meters with the bill_mode attribute defined, which identifies them as billing meters that parent
houses and inverters. If this is not the case, ERCOT naming rules can be applied to identify billing meters.

Parameters

212 Chapter 5. References

TESP Documentation, Release 1.0

* name_root (str) — path and file name of the GLM file, without the extension
e config (dict)

* ercot (bool) — request ERCOT billing meter naming. Defaults to false. — THIS NEEDS
TO LEAVE THIS PLACE

* te30 (bool) — request hierarchical meter handling in the 30-house test harness. Defaults to
false. — THIS NEEDS TO LEAVE THIS PLACE

tesp_support.consensus.glm_dictionary.ti_enumeration_string(rok)
if thermal_integrity_level is an integer, convert to a string for the metadata

tesp_support.consensus.microgrid module

tesp_support.consensus.microgrid.Consenus_dist_DA(dso_market_obj, DA_horizon, fed, time_granted,
time_market_DA_complete)

tesp_support.consensus.microgrid.Consenus_dist_RT (dso_market_obj, fed, time_granted,
time_market_RT_complete)

tesp_support.consensus.microgrid.construct_Laplacian(N_agents)

tesp_support.consensus.microgrid_agent module

Manages the Transactive Control scheme for DSO+T implementation version 1
Public Functions:

substation_loop
initializes and runs the agents

tesp_support.consensus.microgrid_agent.destroy_federate (fed)

tesp_support.consensus.microgrid_agent.inner_substation_loop (configfile, metrics_root,
with_market)

Helper function that initializes and runs the DSOT agents

TODO: This needs to be updated Reads configfile. Writes auction_metrics_root_metrics.json and con-
troller_metrics_root_metrics.json upon completion.

Parameters
» configfile (str) - fully qualified path to the JSON agent configuration file
* metrics_root (str) — base name of the case for metrics output
* with_market (bool) - flag that determines if we run with markets
tesp_support.consensus.microgrid_agent.register_federate (json_filename)
tesp_support.consensus.microgrid_agent.substation_loop (configfile, metrics_root, with_market=True)
Wrapper for inner_substation_loop
When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

tesp_support.consensus.microgrid_agent.worker (arg)

5.3. tesp_support package 213

TESP Documentation, Release 1.0

tesp_support.consensus.residential_feeder_glm module
tesp_support.consensus.retail_market module

Class that manages the operation of retail market at substation-level

Functionalities include: collecting curve bids from DER and DSO agents; generating aggregated buyer and seller
curves; market clearing for both RT and DA retail markets; deciding cleared quantity for individual DERs.

The function call order for this agent is:
initialize(retail _dict)

Repeats at every hour:
clean_bids_DA() curve_aggregator_DA(identity, bid, id) ... curve_aggregator_DA(identity, bid, id)
clear_market_DA(transformer_degradation, Q_max)

Repeats at every 5 min:
clean_bids_RT() curve_aggregator_RT(identity, bid, id) ... curve_aggregator_RT(identity, bid,
id) clear_market_RT(transformer_degradation, Q_max)

class tesp_support.consensus.retail_market.RetailMarket (retail_dict, key)

Bases: object
This agent manages the retail market operating
Parameters
» retail_dict
e key

name

name of the retail market agent

Type

str
price_cap
the maximum price that is allowed in the market, in $/kWh

Type
float

num_samples
the number of sampling points, describes how precisely the curve is sampled
Type
int
windowLength

length of the planning horizon for the DA market, in hours

Type
int
Q_max
capacity of the substation, in kWh
Type
float

214 Chapter 5. References

TESP Documentation, Release 1.0

maxPuLoading
rate of the maxPuLoading for transformer

Type

float
curve_buyer_RT
aggregated buyer curve, updated after receiving each RT buyer bid

Type
Curve

curve_seller_RT
aggregated seller curve, updated after receiving each RT seller bid
Type

Curve
curve_buyer_DA
48 aggregated buyer curves, updated after receiving each DA buyer bid

Type
dict of curves

curve_seller_DA
48 aggregated seller curves, updated after receiving each DA seller bid

Type

dict of curves
clear_type_RT
O=uncongested, 1=congested, 2=inefficient, 3=failure

Type
int

clear_type_DA
list of clear type at each hour
Type
list
cleared_price_RT
cleared price for the substation for the next 5-min

Type
float

cleared_price_DA
list of cleared price at each hour
Type
list
cleared_quantity_RT
cleared quantity for the substation for the next 5-min

Type

float

5.3. tesp_support package 215

TESP Documentation, Release 1.0

cleared_quantity_DA
list of cleared quantity at each hour
Type
list
site_responsive_DA
Site_Day_Ahead quantity which is responsive
Type
list
site unresponsive DA
Site Day Ahead quantity which is unresponsive
Type
list
AMES_RT
Smooth Quadratics

Type
list X 5

AMES_DA
Smooth Quadratics

Type
(list X 5) X windowLength

TOC_dict

parameters related to transformer lifetime cost calculation, including OperatingPeriod (int): operating
period, in minute timeStep (int): timestep, in minute Tamb (float): ambient temperature, in deg C
delta_T_TO_init (int): initial delta temperature of top oil, in deg C delta_T_W_init (int): initial delta
temperature of winding, in deg C BP (float): initial cost of transformer, in $ toc_A (float): cost per watt for
no-load losses, in $/W toc_B (float): cost per watt for load losses, in $/W Base_Year (float): expected lifes-
pan of transformer, in year P_Rated (float): capacity, in W NLL_rate (float): no load loss rate, in % LL _rate
(float): load loss rate, in % Sec_V (float): secondary voltage level, in volt TOU_TOR (float): oil time con-
stant, in minute TOU_GR (float): winding time constant, in minute Oil_n (float): Oil exponent n Wind_m
(float): Winding exponent m delta_T_TOR (float): top oil temperature rise, in deg C delta_T_ave_wind_R
(float): average winding temperature rise over ambient temperature, in deg C

Type
dict

clean_bids_DA()
Initialize the day-ahead market

clean_bids_RT()

Initialize the real-time market

clear_market (curve_buyer, curve_seller, transformer_degradation, Q_max)

Shared function called by both clear_market_RT and clear_market_DA functions to find the intersection
between supply curve and demand curve

Parameters
* curve_buyer (Curve) — aggregated buyer curve

e curve_seller (Curve) — aggregated seller curve

216 Chapter 5. References

TESP Documentation, Release 1.0

* transformer_degradation (bool) — equals to 1 if transformer_degradation is consid-
ered in the supply curve

* Q_max (float) — substation capacity, in kWh

Outputs:
clear_type (int) cleared_price (float) cleared_quantity (float) congestion_surcharge (float)

clear_market_DA(transformer_degradation, Q_max)
Function used for clearing the DA market

Three steps of work are fullfilled in a loop in this function: First the buyer curve at each hour is fitted
polynomial; Second clear_market function is called for calculating the cleared price and cleared quantity for
the whole market at each hour; Third distribute_cleared_quantity function is called for finding the cleared
price and cleared quantity for the individual DERs at each hour.

buyer_info_DA and seller_info_DA, clear_type_DA, cleared_price_DA and cleared_quantity_DA are up-
dated with cleared results

clear_market_RT (transformer_degradation, Q_max)
Function used for clearing the RT market

Three steps of work are fullfilled in this function: First the buyer curve is fitted polynomial; Second
clear_market function is called for calculating the cleared price and cleared quantity for the whole mar-
ket; Third distribute_cleared_quantity function is called for finding the cleared price and cleared quantity
for the individual DERs.

buyer_info_RT and seller_info_RT, clear_type_RT, cleared_price_RT and cleared_quantity_RT are up-
dated with cleared results

convert_2_AMES_quadratic_BID(curve, Q_cleared, price_forecast)
Convert aggregated DSO type bid to AMES quadratic curve

Parameters
e curve (Curve) — substation demand curve to be preprocessed
» price_forecast — locally forecast price at the substation level
* Q_cleared - locally cleared quantity at the substation

Returns

f(Q)=resp_c2*Q"2+C1*Q+C0
unresp_mw (float): minimum demand MW resp_max_mw (float): maximum demand MW
resp_c2 (float): quadratic coefficient resp_c1 (float): linear coefficient resp_cO (float): con-
stant coefficient resp_deg (int): equal to “2” to represent the current order in the list

Return type
quadratic_bid (list)

curve_aggregator_AMES_DA (demand_curve_DA, Q_max, Q_cleared, price_forecast)

Function used to aggregate the substation-level DA demand curves into a DSO-level DA demand curve
Parameters
* demand_curve_DA (dict) —a collection of demand curves to be aggregated for day-ahead
e Q_max (float) — maximum capacity of the substation, in kW
* Q_cleared (float) — locally cleared quantity of the substation in kW

» price_forecast (float) — locally forecast price at the substation level

5.3. tesp_support package 217

TESP Documentation, Release 1.0

curve_aggregator_AMES_RT (demand_curve_RT, Q_max, Q_cleared, price_forecast)

Function used to aggregate the substation-level RT demand curves into a DSO-level RT demand curve
Parameters
¢ demand_curve_RT (Curve) — demand curve to be aggregated for real-time
* Q_max (float) — maximum capacity of the substation, in kW
* Q_cleared (float) — locally cleared quantity of the substation in kW
e price_forecast (float) — locally forecast price at the substation level

curve_aggregator_DA (identity, bid_DA, name)
Function used to collect the DA bid and update the accumulated buyer or seller curve

Parameters
* identity (str) — identifies whether the bid is collected from a “Buyer” or “Seller”

* bid_DA (1ist) — a nested list with dimension (self.windowLength, m, 2), with m equals 2
to 4

* name (str) — name of the buyer or seller

curve_aggregator_RT (identity, bid_RT, name)

Function used to collect the RT bid and update the accumulated buyer or seller curve
Parameters
e identity (str) — identifies whether the bid is collected from a “Buyer” or “Seller”
¢ bid_RT (list) — a nested list with dimension (m, 2), with m equals 2 to 4
* name (str) — name of the buyer or seller

curve_preprocess (substation_demand_curve, Q_max)

An internal shared function called by curve_aggregator_DSO_RT and curve_aggregator_DSO_DA

functions to truncate) o
the substation demand curve before aggregation as well as convert the retail prices into wholesale

prices

Parameters
¢ substation_demand_curve (Curve) — substation demand curve to be preprocessed
e Q_max (float)— maximum capacity of the substation, in kW

Returns
preprocessed demand curve

Return type
preprocessed_curve (curve)

formulate_bid_industrial_da(industrial_load_forecast, price_forecast)

This file is to create a bid curve for industrial customer for the given demand-price elasticity

elasticity (a) = (del-Q/Q)/(del-P/P) —> del-Q/del-p = a * Q / P The slope of the bid curve for
the industrial load will be Slope (S) = (del-Q/del-P) The Q-axis intercept for the bid curve will
be (C_Q) =Q + S * del-p =Q - a * Q The P-axis intercept for the bid curve will be (C_P) =P
+S*1/del-Q=P-P/a

218 Chapter 5. References

TESP Documentation, Release 1.0

Args:
price_forecast: forecasted price in $/kWh at the instance (if we are going to bid directly in ISO, then
this is LMP forecast, or else, it is retail price forecast industrial_load_forecast: forecast quantity
of industrial load in kW at that instant

Returns:
bid_da (float) (1 x windowLength): Bid quantity from optimization for all hours of the window
specified by windowLength

formulate_bid_industrial_rt(industrial_load, price_cleared)

This file is to create real time bid curve for industrial customer for the given demand-price elasticity

elasticity (a) = (del-Q/Q)/(del-P/P) —> del-Q/del-p = a * Q / P The slope of the bid curve for
the industrial load will be Slope (S) = (del-Q/del-P) The Q-axis intercept for the bid curve will
be (C_Q)=Q + S * del-p = Q - a * Q The P-axis intercept for the bid curve will be (C_P) =P
+S*1/del-Q=P-P/a

Args:
price_cleared (float): Price cleared in $/kWh at the instance (if we are going to bid directly in
ISO, then this is LMP forecast, or else, it is retail price forecast industrial_load (float): The most
updated (closer to real-time) industrial load in kW at that instant

Returns:
bid_rt (1,2)X4): 4 point industrial load bid

process_site_da_quantities(forecast_load, name, status)

Function stores the day-ahead quantities, primarily for HVAC at the moment, it utilizes

arguments in: unresponsive loads (1x 48) dataframe responsive loads (1x48) dataframe name: of the house
(str) returns self.site_quantity_DA (dict, ‘name’, ‘ status (participating or not participating’, ‘Quantity (1 x
48))

retail_rate_inverse(Pr)

Function used to convert the retail prices into wholesale prices

Parameters
Pr (float) — retail price, in $/kWh

Returns
wholesale price, in $/kWh

Return type
Pw (float)

test_function()

Test function with the only purpose of returning the name of the object

tesp_support.consensus.retail_market.test()
Testing AMES

5.3. tesp_support package 219

TESP Documentation, Release 1.0

tesp_support.consensus.substation module

tesp_support.consensus.substation.Consenus_dist_DA(dso_market_obj, DA_horizon, fed, hour_of day,
time_granted, time_market_DA_complete)

tesp_support.consensus.substation.Consenus_dist_RT (dso_market_obj, fed, hour_of day, time_granted,
time_market_RT_complete)

tesp_support.consensus.substation.construct_Laplacian(N_agents)

tesp_support.consensus.weather_agent module

Weather Agent
This weather agent needs an WEATHER_CONFIG environment variable to be set, which is a json file.

tesp_support.consensus.weather_agent.convertTimeToSeconds (time)

Convert time string with unit to integer in seconds

It only parse unit in day, hour, minute and second. It will not recognize week, month, year, millisecond, mi-
crosecond or nanosecond, they can be added if needed.

Parameters
time (str) — time with unit

Returns
(int) represent the input time in second

tesp_support.consensus.weather_agent .deltaTimeToResampleFreq (time)

Convert time unit to a resampling frequency that can be recognized by pandas.DataFrame.resample()

It only parse unit in day, hour, minute and second. It won’t recognize week, month, year, millisecond, microsec-
ond or nanosecond, they can be added if needed.

Parameters
time (str) - time with unit

Returns
(str) time with resample frequency

tesp_support.consensus.weather_agent.destroy_federate(fed)
tesp_support.consensus.weather_agent.findDeltaTimeMultiplier (time)
Find the multiplier to convert delta_time to seconds

It only parse unit in day, hour, minute and second. It won’t recognize week, month, year, millisecond, microsec-
ond or nanosecond, they can be added if needed.

Parameters
time (str) — time with unit

Returns
(int) the multiplier to convert delta_time to seconds

tesp_support.consensus.weather_agent.register_federate (json_filename)

220 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.consensus.weather_agent.startWeatherAgent (file)
The weather agent publishes weather data as configured by the json file

Parameters
file (str) — the weather data file

Returns
(none)

tesp_support.consensus.weather_agent.usage()
class tesp_support.consensus.weather_agent.weather_forecast (variable, period, W_dict)
Bases: object
This object includes the error to a weather variable
Parameters
» variable (str) — Type of weather variable being forecasted
* period (int) — period of the sinusoidal bias
* W_dict (dict) —dictionary for specifying the generation of the error envelope
weather_variable
Type of weather variable being forecasted

Type

str

Type of error insertion

distribution
type of distribution —> 0 uniform;1 triangular;2 truncated normal the standard deviation is computed for
95% of values to be within bounds in a conventional normal distribution

Type
int

P_e_bias

pu maximum bias at first hour —> [0 to 1]

Type
float

P_e_envelope

pu maximum error from mean values —> [0 to 1]

Type
float

Lower_e_bound

pu of the maximum error at the first hour —> [0 to 1]

Type
float

Bias variable

5.3. tesp_support package 221

TESP Documentation, Release 1.0

biasM

sinusoidal bias for altering the error envelope

Type
float) (1 X period

Period_bias

period of the sinusoidal bias

Type
int

get_truncated_normal (EL, EH)

Truncated normal distribution

make_forecast (weather, t=0)

Include error to a known weather variable
Parameters

e weather (float) (1 x desired number of hours ahead)— known weather vari-
able

e t (int) — time in hours

Returns
weather variable with included error ENV_U (float) (1 x desired number of hours ahead):
envelope with bias upper bound ENV_I (float) (1 x desired number of hours ahead): envelope
with bias lower bound

Return type
weather_f (float) (1 x desired number of hours ahead)

tesp_support.dsot package

Transactive Energy Simulation Platform (TESP) Contains the python files for the DSOT analysis

Submodules
tesp_support.dsot.Wh_Energy Purchases module

Utilities to open and read load
Todo: files should be passed in for ‘load*’ functions
Public Functions:

load_hourly_data
Utility to open csv file for hourly load data

load_realtime_data
Utility to open csv file 5 min load data

load_price_data
Utility to open csv file LMP data

Wh_Energy_Purchases
Computes the total costs, total energy purchases and average price annually

222 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.Wh_Energy_Purchases.Wh_Energy_Purchases (dir_path, dso_num, simdata=False,
hi=5, h2=16, h3=20, place="Houston")

Computes the total costs, total energy purchases and average price annually for bilateral, day-ahead and real-time
markets from hourly and 5 min ERCOT energy and price data.

* Loads hourly ERCOT energy and price data.

* Computes minimum wholesale price and quantity for day, evening, and weekend to represent the fixed
prices and energy quantities for the bilateral market.

« Total annual average price, total cost and total energy purchases from the bilateral market are then computed.

Parameters
e dir_path (str) — path of the ERCOT energ and price data
e dso_num (int) — dso number (1-8)

e simdata (bool) — If True will seek simulation data. If false will use 2016 ERCOT data.

h1 (int) — hours specified to define day

* h2 (int) — hours specified to define evening

h3 (int) — hours specified to define night respectively (e.g. weekday hours hl to h2, evening
hours from h2+1 to h3, and night hours are from h3+1 to h1 the next day)

e place (str) —location of DSO

Returns
real-time, day-ahead, and bilateral market purchases (annual cost, energy and average price)

Return type
dict
tesp_support.dsot.Wh_Energy_Purchases.load_hourly_data(dir_path, dso_num, simdata)
Utility to open hourly ERCOT csv file.
The entire date range for the data (e.g. 1 year) is considered
Parameters
e dir_path (str) — directory path of data
e dso_num (int) — dso number
e simdata (bool) — If True will seek simulation data. If false will use 2016 ERCOT data.

Returns
dataframe of ERCOT data for dso specified

Return type
dataframe

tesp_support.dsot.Wh_Energy_Purchases.load_price_data(dir_path, market_type, dso_num, simdata,
place)

Utility to open 5 min ERCOT csv file.
The entire date range for the data (e.g. 1 year) is considered
Parameters
» dir_path (str) — directory path of data
» market_type (str) — string telling the market type (‘DA’,RT’)

5.3. tesp_support package 223

TESP Documentation, Release 1.0

e dso_num (int) — dso number
e simdata (bool) — If True will seek simulation data. If false will use 2016 ERCOT data.
e place (str) —location of DSO

Return type
prices_data

tesp_support.dsot.Wh_Energy_Purchases.load_realtime_data(dir_path, dso_num, simdata)
Utility to open 5 min ERCOT csv file.

The entire date range for the data (e.g. 1 year) is considered
Parameters
e dir_path (str) — directory path of data
e dso_num (int) — dso number
e simdata (bool) — If True will seek simulation data. If false will use 2016 ERCOT data.

Returns
15 min dataframe of ERCOT data for specified dso

Return type
dataframe

tesp_support.dsot.balance_sheet_functions module

tesp_support.dsot.balance_sheet_functions.iso_balance_sheet_annual (meta_path, write_path,
write_to_txt=False,
write_to_JSON=False)

This function calculates ...
Parameters
e meta_path
e write_path
e write_to_txt
e write_to_JSON

Return type
dict

tesp_support.dsot.balance_sheet_functions.test_iso()

tesp_support.dsot.balance_sheet_functions.test_too()

tesp_support.dsot.balance_sheet_functions.too_balance_sheet_annual (meta_path, write_path,
write_to_txt=False,
write_to_JSON=False)

This function calculates ...
Parameters

e meta_path

e write_path

* write_to_txt

224 Chapter 5. References

TESP Documentation, Release 1.0

e write_to_JSON

Return type

dict

tesp_support.dsot.battery _agent module

Class that controls the Battery DER

Implements the optimum schedule of charging and discharging DA; generate the bids for DA and RT; monitor and
supervisory control of GridLAB-D environment element.

The function call order for this agent is:

e initialize()

Repeats at every hour

e formulate_bid_da() {return BID}

e set_

price_forecast(forecasted_price)

Repeats at every S mins

* set_|

battery_SOC(msg_str) {updates C_init}

e formulate_bid_rt() {return BID}

* inform_bid(price) {update RTprice}

* bid_accepted() {update inv_P_setpoint and GridLAB-D P_out if needed}

class tesp_support.dsot.battery_agent.BatteryDSOT (battery_dict, inv_properties, key,

model_diag_level, sim_time, solver)

Bases: object

This agent manages the battery/inverter

Parameters

Initialize

name

battery_dict (dict)

inv_properties (dict)

key (str)

model_diag_level (int) — Specific level for logging errors; set it to 11
sim_time (str) — Current time in the simulation; should be human-readable
solver (str)

from Args

name of this agent

Type

Rc

str

rated charging power in kW for the battery
Type

float

5.3. tesp_support package

225

TESP Documentation, Release 1.0

Rd
rated discharging power in kW for the battery
Type
float
Lin
battery charging loss in %
Type
float
Lout
battery discharging loss in %
Type
float
Cmin
minimum allowable stored energy in kWh (state of charge lower limit)
Type
float
Cmax
maximum allowable stored energy in kWh (state of charge upper limit)
Type
float
Cinit
initial stored energy in the battery in kWh
Type
float
batteryCapacity
battery capacity in kWh
Type
float
batteryLifeDegFactor
constant to model battery degradation
Type
float
windowLength
length of day ahead optimization period in hours (e.g. 48-hours)
Type
int
dayAheadCapacity
% of battery capacity reserved for day ahead bidding
Type
float

No initialization required

226 Chapter 5. References

TESP Documentation, Release 1.0

bidSpread
this can be used to spread out bids in multiple hours. When set to 1 hour (recommended), it’s effect is none

Type

int

location of P in bids

Type
int

location of Q in bids

Type
int

f_DA

forecasted prices in $/kWh for all the hours in the duration of windowLength

Type
List[float]) (1 X windowLength

ProfitMargin_slope
specified in % and used to modify slope of bid curve. Set to 0 to disable

Type
float

ProfitMargin_intercept
specified in % to generate a small dead band (i.e., change in price does not affect quantity). Set to O to

disable
Type
float
pm_hi
Highest possible profit margin in %
Type
float
pm_lo
Lowest possible profit margin in %
Type
float

RT_state_maintain
true if battery must maintain charging or discharging state for 1 hour

Type
bool

RT_state_maintain_flag

(0) not define at current hour (-1) charging (+1) discharging

Type

int

5.3. tesp_support package 227

TESP Documentation, Release 1.0

RT_flag
if True, has to update GridLAB-D

Type
bool

inv_P_setpoint

next GridLAB-D inverter power output

Type
float

optimized_Quantity
Optimized quantity

Type
List[float]) (1 X Window Length

#not used if not biding DA

prev_clr_Quantity

cleared quantities (kWh) from previous market iteration for all hours

Type
List[float]) (1 X Window Length

prev_clr_Price

cleared prices ($/kWh) from previous market iteration

Type
List[float]) (1 X windowLength

BindingObjFunc

if True, then optimization considers cleared price, quantities from previous iteration in the objective func-
tion

Type
bool

DA_cleared_price(price)
Set the DA_cleared_price attribute

Parameters
price (float) — cleared price in $/kWh

DA_optimal_quantities()
Generates Day Ahead optimized quantities for Battery

Returns
Optimal quantity from optimization for all hours of the window specified by windowLength

Return type
Quantity (float) (1 x windowLength)

RT_fix_four_points_range(BID, QI, Qu)
Verify feasible range of RT bid

Parameters
* BID (float) ((1,2)X4)-4 pointbid
. Ql

228 Chapter 5. References

TESP Documentation, Release 1.0

. Qu

Returns
4 point bid only the feasible range

Return type
BIDr (float) ((1,2)X4)

RT_gridlabd_set_P(model_diag_level, sim_time)
Update variables for battery output “inverter”

Parameters
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable
inv_P_setpoint is a float in W

bid_accepted(current_time)
Update the P and Q settings if the last bid was accepted

Returns
True if the inverter settings changed, False if not.

Return type
bool

con_rule_eql(m, i)
con_rule_eq2(m, i)
con_rule_eq3(m, i)
con_rule_inel(m, i)
con_rule_ine2(m, i)
formulate_bid_da()

Formulate 4 points of P and Q bids for the DA market

Function calls “DA_optimal_quantities” to obtain the optimal quantities for the DA market. With the quan-
tities, the 4 point bids are formulated.

Before returning the BID the function resets “RT_state_maintain_flag” wich if RT_state_maintain is TRUE
the battery will be forced to keep its state (i.e., charging or discharging).

Returns
store last DA market bids

Return type
BID (float) (((1,2)X4) X windowLength)
formulate_bid_rt()
Formulates RT bid
Uses the last 4 point bid from DA market and consider current state of charge of the battery. Will change

points to change points for feasible range of Qmin Qmax points if necessary. Furthermore, allows a maxi-
mum deviation of +/-100% from the DA plan.

Returns
bid in Real Time market

5.3. tesp_support package 229

TESP Documentation, Release 1.0

Return type
realTimeBid (float) ((1,2) x 4)

from_P_to_Q_battery(BID, PRICE)
Convert the 4 point bids to a quantity with the known price

Parameters
e BID (float) ((1,2)X4)- 4 point bid
 PRICE (float) — cleared price in $/kWh

Returns
active power (-) charging (+) discharging

Return type
_quantity (float)

inform_bid(price)
Set the cleared_price attribute

Parameters
price (float) — cleared price in $/kWh

obj_rule(m)
set_battery_SOC(msg_str, model_diag_level, sim_time)
Set the battery state of charge
Updates the self.Cinit of the battery
Parameters
e msg_str (str)— message with battery SOC in pu
e model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable

set_price_forecast (forecasted_price)
Set the f_DA attribute
Parameters
forecasted_price (float x 48)— cleared price in $/kWh
test_function()

Test function with the only purpose of returning the name of the object

tesp_support.dsot.battery_agent.test()
Makes a single battery agent and run DA

tesp_support.dsot.case_comparison_plots module

tesp_support.dsot.case_comparison_plots.plot_lmp_stats(cases, data_paths, output_path, dso_num,
variable)

Will plot LMPS by month, duration, and versus netloads loads (for select month), and save to file. :param cases:
names of the cases :type cases: List[str] :param data_paths: location of the data files to be used. :type data_paths:
str :param output_path: path of the location where output (plots, csv) should be saved :type output_path: str
:param dso_num: bus number for LMP data to be plotted :type dso_num: str :param variable: :type variable: str

230 Chapter 5. References

TESP Documentation, Release 1.0

Returns
saves dso Imps plots to file

tesp_support.dsot.case_merge module

Combines GridLAB-D and agent files to run a multi-feeder TESP simulation

Public Functions:

merge_glm
combines GridLAB-D input files

merge_glm_dict
combines GridLAB-D metadata files

merge_agent_dict
combines the substation agent configuration files

merge_substation_yaml
combines the substation agent FNCS publish/subscribe files

merge_fncs_config
combines GridLAB-D FNCS publish/subscribe files

tesp_support.dsot.case_merge.merge_agent_dict (target, sources)
Combines the substation agent configuration files into “target”. The source files must already exist.

Parameters
* target (str) — the path to the target JSON file, including the name of the file
» sources (list) — list of feeder names in the target directory to merge
tesp_support.dsot.case_merge.merge_fncs_config(target, sources)
Combines GridLAB-D input files into “target”. The source feeders must already exist.
Parameters
* target (str) — the path to the target TXT file, including the name of the file

» sources (list) — list of feeder names in the target directory to merge

tesp_support.dsot.case_merge.merge_glm(zarget, sources, xfmva)
Combines GridLAB-D input files into “target”. The source files must already exist.

Parameters
* target (str) — the path to the target GLM file, including the name of the file
* sources (1ist) - list of feeder names in the target directory to merge
e xfmva (int)

tesp_support.dsot.case_merge.merge_glm_dict (target, sources, xfmva)
Combines GridLAB-D metadata files into “target”. The source files must already exist.

The output JSON won’t have a top-level base_feeder attribute. Instead, the base_feeder from each source file
will become a feeder key in the output JSON feeders dictionary, and then every child object on that feeder will
have its feeder_id, originally network_node, changed to match the base_feeder.
Parameters
* target (str) — the path to the target JSON file, including the name of the file

5.3. tesp_support package 231

TESP Documentation, Release 1.0

» sources (1ist) — list of feeder names in the target directory to merge
e xfmva (int)

tesp_support.dsot.case_merge.merge_substation_yaml (farget, sources)

Combines GridLAB-D input files into “target”. The source files must already exist.
Parameters
* target (str) — the path to the target YAML file, including the name of the file

» sources (1ist) — list of feeder names in the target directory to merge

tesp_support.dsot.customer_CFS module

@author: yint392

tesp_support.dsot.customer_CFS.customer_CFS(GLD_metadata, metadata_path, customer, customer_bill)

tesp_support.dsot.customer_CFS.get_customer_df (dso_range, case_path, metadata_path)

tesp_support.dsot.dso_CFS module

@author: yint392

tesp_support.dsot.dso_CFS.dso_CFS(case_config, DSOmetadata, dso_num, DSO_peak_demand,
DSO_base_case_peak_demand, DSO_Cash_Flows,
DSO_Revenues_and_Energy_Sales, Market_Purchases,
Market_Purchases _base_case)

tesp_support.dsot.dso_CFS.get_DSO_df (dso_range, case_config, DSOmetadata, case_path, base_case_path)

tesp_support.dsot.dso_helper_functions module

@author: yint392
tesp_support.dsot.dso_helper_functions.TEAM(FteLevI=100.0, SalaryEscI=1.3)

tesp_support.dsot.dso_helper_functions.get_mean_for_diff_groups(df, main_variables,
variables_combs,
cfs_start_position=24)

tesp_support.dsot.dso_helper_functions.labor (group, metadata_general, metadata_dso, utility_type,
NoSubstations)

tesp_support.dsot.dso_helper_functions.labor_increase (group, metadata_general, metadata_dso,
utility_type, NoSubstations,
TransactiveCaseFlag)

tesp_support.dsot.dso_helper_functions.labor_network_admin(group, hourly_rate, metadata_general,
metadata_dso, utility_type,
NoSubstations)

232 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.dso_helper_functions.labor_network_admin_increase (group, hourly_rate,
metadata_general,
metadata_dso, utility_type,
NoSubstations,
TransactiveCaseFlag)

tesp_support.dsot.dso_helper_functions.labor_network_admin_transactive(group, hourly_rate,
metadata_general,
metadata_dso,

utility_type,
NoSubstations,
TransactiveCaseFlag)

tesp_support.dsot.dso_helper_functions.labor_transactive (group, metadata_general, metadata_dso,
utility_type, NoSubstations,
TransactiveCaseFlag)

tesp_support.dsot.dso_helper_functions.returnDictSum(temp_dict)

tesp_support.dsot.dso_map module

tesp_support.dsot.dso_map.prepare_metadata(node, end_row, feeder_mode, high_renewables_case,
DSO_Load_Threshold)

tesp_support.dsot.dso_market module

Class that manages the operation of DSO agent

Functionalities include: Aggregate demand bids from different substations; Wholesale no da trial clearing; Conversion
between wholesale price and retail price; Generate substation supply curves with and without consideration of the
transformer degradation.

class tesp_support.dsot.dso_market.DSOMarket (dso_dict, key)

Bases: object
This agent manages the DSO operating
Parameters
* dso_dict
e key
name
name of the DSO agent

Type

str
price_cap

the maximum price that is allowed in the market, in $/kWh

Type
float

5.3. tesp_support package 233

TESP Documentation, Release 1.0

num_samples
the number of sampling points, describes how precisely the curve is sampled
Type
int
windowLength
length of the planning horizon for the DA market, in hours

Type
int

DSO_Q_max
maximum limit of the DSO load capacity, in kWh

Type

float
transformer_degradation
flag variable, equals to 1 when transformer degradation effect is taken into account

Type
bool

curve_a
array of second order coefficients for the wholesale node curve, indexed by day_of_sim and hour_of_day

Type

array
curve_b
array of first order coefficients of the wholesale node curve, indexed by day_of_sim and hour_of_day

Type
array

curve_cC

array of intercepts of the wholesale node curve, indexed by day_of_sim and hour_of_day

Type

array
Pwclear_RT
cleared wholesale price by real-time wholesale node trial clearing, in $/kWh

Type
float

Pwclear_DA

list of cleared wholesale price by day-ahead wholesale node trial clearing, in $/kWh, indexed by hour

Type
list
trial_cleared_quantity_RT

trial cleared quantity by real-time wholesale node trial clearing, in kWh

Type

float

234 Chapter 5. References

TESP Documentation, Release 1.0

trial_cleared_quantity_DA
trial cleared quantity by day-ahead wholesale node trial clearing, in kWh
Type
list
curve_DSO_RT
aggregated demand curve at DSO level from real-time retail market

Type

Curve

curve_DSO_DA

dictionary of aggregated demand curves at DSO level from day-ahead retail market, indexed by hour

Type
dict

curve_ws_node

dictionary of wholesale node curves, indexed by day_of_sim and hour_of_day

Type
dict
trial_clear_type_RT

trial cleared type of real-time wholesale node trial clearing

Type
int
trial_clear_type_DA
trial cleared type of day-ahead wholesale node trial clearing, indexed by hour

Type
list

hour_of_day

current hour of the day

Type

int
day_of_week

current day of the week

Type
int

customer_count_mix_residential

Residential percentage of the total customer count mix

number_of_gld_homes
Total number of GLD homes for the DSO

clean_bids_DA(Q)

Initialize the day-ahead wholesale node trial clearing

clean_bids_RT()

Initialize the real-time wholesale node trial clearing

5.3. tesp_support package 235

TESP Documentation, Release 1.0

curve_aggregator_DSO_DA(demand_curve_DA, Q_max)
Function used to aggregate the substation-level DA demand curves into a DSO-level DA demand curve

Parameters
¢ demand_curve_DA (dict)—a collection of demand curves to be aggregated for day-ahead
* Q_max (float) — maximum capacity of the substation, in kW

curve_aggregator_DSO_RT (demand_curve_RT, Q_max)
Function used to aggregate the substation-level RT demand curves into a DSO-level RT demand curve

Parameters
¢ demand_curve_RT (Curve) — demand curve to be aggregated for real-time
* Q_max (float) — maximum capacity of the substation, in kW

curve_preprocess (substation_demand_curve, Q_max)

An internal shared function called by curve_aggregator_DSO_RT and curve_aggregator_DSO_DA func-
tions to truncate the substation demand curve before aggregation as well as convert the retail prices into
wholesale prices

Parameters
¢ substation_demand_curve (Curve) — substation demand curve to be preprocessed

e Q_max (float)— maximum capacity of the substation, in kW

Returns
preprocessed demand curve

Return type
preprocessed_curve (curve)

generate_TOC(costInterval, maxPulLoad, num_samples, TOC_dict)

Function used to calculate the total owning cost of transformer
Parameters
¢ costInterval (int) - interval for calculating the cost, in minutes
¢ maxPuload (float) — maximum pu loading factor
e num_samples (int) — number of sampling points
» TOC_dict (dict) — configuration parameters for transformer

Returns
price axis of unit owning cost, in $/kWh LoadsForPlot (list): quantity axis of unit owing cost,

in kWh

Return type
DollarsForPlot (list)

get_prices_of_quantities(Q, day, hour)
Returns the prices DSO quadratic curve cost for a list of quantities

Parameters
* Q(1ist of float) - quantities
 day (int) — day of the week

* hour (int) — hour of the day

236 Chapter 5. References

TESP Documentation, Release 1.0

Returns
prices for the quantities

Return type
P (list of float)

retail_rate(Pw)

Function used to convert the wholesale prices into retail prices

Parameters
Pw (float) — wholesale price, in $/kWh

Returns
retail price, in $/kWh

Return type
Pr (float)

retail_rate_inverse(Pr)

Function used to convert the retail prices into wholesale prices

Parameters
Pr (float) — retail price, in $/kWh

Returns
wholesale price, in $/kWh

Return type
Pw (float)

set_Pwclear_DA(hour_of day, day_of week)
Function used to implement the DA trial wholesale node clearing and update the Pwclear_DA value
Parameters
* hour_of_day (int) — current hour of the day
¢ day_of_week (int) — current day of the week
set_Pwclear_RT (hour_of day, day_of week, Imp=False)
Function used to implement the RT trial wholesale node clearing and update the Pwclear_RT value
Parameters
* hour_of_day (int) — current hour of the day
¢ day_of_week (int) — current day of the week
e Imp
set_cleared_q_da(val)
Set the clear quantity for day ahead

Parameters
val (double) — Imp for the bus/substation

set_cleared_q_rt(val)

Set the clear quantity for real time

Parameters
val (double) — Imp for the bus/substation

5.3. tesp_support package 237

TESP Documentation, Release 1.0

set_ind_load (industrial_load)

Set the industrial load based on provided load by a csv file after base-case, complex number

Parameters
industrial_load (str) — industrial load of substation

set_ind_load_da (industrial_load_da)

Set the ercot ind load for the next 24-hours provided load by a csv file after base-case, complex number

Parameters
industrial_load_da (24 x 1 array of double) — industry load values for the next
day ahead are given in MW

set_lmp_da(val)

Set the Imp for day ahead

Parameters
val (array of double) - Imp for the day ahead

set_lmp_rt(val)

Set the Imp for real time

Parameters
val (double) — Imp for the bus/substation

set_ref load(ref_load)

Set the reference (ercot) load based on provided load by a csv file after base-case, complex number

Parameters
ref_load (str) — total load of substation

set_ref_load_da(ref load_da)

Set the ercot load for the next 24-hours provided load by a csv file after base-case, complex number

Parameters
ref_load_da (24 x 1 array of double) - ercot load values for the next day ahead

set_total_load (total_load)

Set the residential load based on provided load by GLD, complex number

Parameters
total_load (str) — total load of substation

substation_supply_curve_DA (retail_obj)

Function used to generate the DA supply curves for each substation
Args:

Variables:

FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder
peak demand price, in $/kWh FeederCongCapacity (float): feeder congestion capacity, in kWh Feed-
erPkDemandCapacity (float): feeder peak demand, in kWh Q_max_retail (float): substation limit, in
kWh Q_max_DSO (float): can change when the demand bid is higher than the original DSO limit
maxPuloading (float): maximum pu loading factor TOC_dict (dict): configuration parameters for
transformer

Returns
a collection of substation supply curves for day-ahead market clearing

Return type
supply_curve_DA (list)

238

Chapter 5. References

TESP Documentation, Release 1.0

substation_supply_curve_RT (retail_obj)
Function used to generate the RT supply curve for each substation
Args:

Variables:
FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder
peak demand price, in $/kWh FeederCongCapacity (float): feeder congestion capacity, in kWh Feed-
erPkDemandCapacity (float): feeder peak demand, in kWh Q_max_retail (float): substation limit, in
kWh Q_max_DSO (float): can change when the demand bid is higher than the original DSO limit
maxPuloading (float): maximum pu loading factor TOC_dict (dict): configuration parameters for
transformer

Returns

substation supply curve for real-time market clearing
Return type

supply_curve_RT (curve)

supply_curve (Prclear, FeederCongCapacity, FeederPkDemandCapacity, num_samples, Q_max,
maxPuLoading, TOC_dict)

An internal shared function called by substation_supply_curve_RT and substation_supply_curve_DA func-
tions to generate the supply curve when considering the transformer degradation

Parameters

e Prclear (float)—retail price overted from wholesale price obtained from trial wholesale
node clearing, in $/kWh

» FeederCongCapacity (float) — feeder congestion capacity, in kWh
* FeederPkDemandCapacity (float) — feeder peak demand, in kWh
e num_samples (int) — number of sampling points

e Q_max (float) — substation limit, in kWh

» maxPuloading (float)— maximum pu loading factor

TOC_dict (dict) — configuration parameters for transformer

Variables:
FeederCongPrice (float): feeder congestion price, in $/kWh FeederPkDemandPrice (float): feeder peak
demand price, in $/kWh

Returns
quantity sampling of the supply curve, in kWh SupplyPrices (list): prices sampling of the
supply curve, in $/kWh

Return type
SupplyQuantities (list)

test_function()

Test function with the only purpose of returning the name of the object

trial_wholesale_clearing(curve_ws_node, curve_DSO, day, hour)

An internal shared function called by set_Pwclear_RT and set_Pwclear_DA functions to implement the
trial wholesale node clearing

Parameters

5.3.

tesp_support package 239

TESP Documentation, Release 1.0

¢ curve_ws_node (Curve) — wholesale node curve

e curve_DSO (Curve) — aggregated demand curve at DSO level
e day

* hour

Returns
cleared price, in $/kWh cleared_quantity(float): cleared quantity, in kWh trial_clear_type
(int): clear type

Return type
Pwclear (float)

update_wholesale_node_curve()

Update the wholesale node curves according to the most updated curve coefficients, may be updated every
day

tesp_support.dsot.dso_market.test()

tesp_support.dsot.dso_quadratic_curves module

Class that prepares the quadratic curves for DSO market

class tesp_support.dsot.dso_quadratic_curves.DSO_LMPs_vs_Q(config_path='LMP_DATA',
file_name="/Annual_DA_LMP_Load_data.csv")

Bases: object
This object creats the quadractive curves witht historical data from the base case
Parameters
» config_path (str) — path to file directory
e file_name (str) — name of the CSV file containing the historical DA LMP prices with
associated quantities
config_path
path to file directory

Type
str

df_dsos_lml_q

list of Imps and associated quantity trou time

Type

list od dataframes
Imps_names

list of Imps names

Type
list of str
q_lmps_names
list of quantities names

Type

list of str

240 Chapter 5. References

TESP Documentation, Release 1.0

degree

degree of curve to be fitted

Type

int
coeficients_weekday

24 arrays of 3 for every DSO

Type
array of arrays

coeficients_weekend
24 arrays of 3 for every DSO

Type

array of arrays

c_to_DSO_m(DSO, C)
Convert coefficients to DSO market

Parameters
¢ DSO (int) — DSO identifier
e C(int)—from O to 2 especifing the curve coeficient being taken

fit_model (i, p_time)
Fit a quadractive curve utilizing sklearn

Parameters
e i (int) — DSO identifier
e p_time (np array bool) — True for samples utilized in fiiting the quadractic curve

Returns
[[‘1°, ‘x’, “x"2’]] quadractic curve coeficients

Return type
df_dsos_Iml_q (array)

make_json_out()

Save the fitted curve to json
multiple_fit_calls()

Calls the fit model for each scenario

The scenarios are hour of day and day type (i.e., weekday and weekends)
organize_remuve_outliers(data_da)

Orginize and remuve outliers from dataframe of multiple DSO

Parameters
data_da (dataframe) — contaings historical data from DA LMPs with associated quantities

Returns
every element of the list is a DSO with historical price and quantiti. The index is pandas
datetime.

Return type
df_dsos_Iml_q (list of dataframes)

5.3. tesp_support package 241

TESP Documentation, Release 1.0

tesp_support.dsot.dso_rate_making module

@author: reev057

tesp_support.dsot.dso_rate_making.DSO_rate_making(case, dso_num, metadata, dso_expenses,

tariff_path, dso_scaling_factor, num_indust_cust,
case_name=", iterate=False)

Main function to call for calculating the customer energy consumption, monthly bills, and tariff adjustments
to ensure revenue matches expenses. Saves meter and bill dataframes to a hdf5 file. :param case: directory
path for the case to be analyzed :type case: str :param dso_num: number of the DSO folder to be opened :type
dso_num: str :param metadata: :param dso_expenses: dso expenses that need to be matched by customer revenue
‘type dso_expenses: TBD :param tariff_path: :param dso_scaling factor: multiplier on customer bills to reflect
the total number of customers in the DSO :type dso_scaling factor: float :param num_indust_cust: number of
industrial customers :type num_indust_cust: int :param case_name: name of the case (‘MR-BAU’, ‘MR-Batt’,
‘MR-Flex’, ‘MR-BAU’, ‘MR-Batt’, ‘MR-Flex’) :type case_name: str :param iterate: If True will iterate once to
square up revenue. :type iterate: Boolean

Returns
dataframe of energy consumption and max 15 minute power consumption for each month and
total bill_df : dataframe of monthly and total bill for each house broken out by each element
(energy, demand, connection, and total bill) tariff: Updated dictionary of tariff structure with
rates adjusted to ensure revenue meets expenses surplus: dollar value difference between dso
revenue and expenses. When converged should be tiny (e.g. le-12)

Return type
meter_df

tesp_support.dsot.dso_rate_making.annual_energy (month_list, folder_prefix, dso_num, metadata)

Creates a dataframe of monthly energy consumption values and annual sum based on monthly hS files. :param
month_list: list of lists. Each sub list has month name (str), directory path (str) :type month_list: list :param
folder_prefix: prefix of GLD folder name (e.g. ‘/TE_base_s’) :type folder_prefix: str :param dso_num: number
of the DSO folder to be opened :type dso_num: str :param metadata: metadata of GridLAB-D model entities
‘type metadata: dict

Returns
dataframe of energy consumption and max 15 minute power consumption for each month and
total year_energysum_df: dataframe of energy consumption summations by customer class (res.,
commercial, and indust)

Return type
year_meter_df

tesp_support.dsot.dso_rate_making.calc_cust_bill (metadata, meter_df, trans_df , energy_sum_df,

tariff, dso_num, SF, ind_cust)

Calculate the customer bill using summary meter data and fixed tariff structure. :param metadata: metadata struc-
ture for the DSO to be analyzed :type metadata: dict :param meter_df: monthly and total energy consumption
and peak power by house (meter) :type meter_df: dataframe :param trans_df: :param energy_sum_df: :param
tariff: dictionary of fixed tariff structure :type tariff: dict :param dso_num: :param SF: Scaling factor to scale
GLD results to TSO scale (e.g. 1743) :type SF: float :param ind_cust: number of industrial customers :type
ind_cust: int

Returns
dataframe of monthly and total bill for each house broken out by each element (energy, demand,
connection, and total bill)

Return type
bill_df

242

Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.dso_rate_making.get_cust_bill (cust, bill_df, bill_metadata)

Populates dictionary of individual customer’s annual bill. :param cust: customer name (meter name from
GLD dictionary) :type cust: str :param bill_df: dataframe of annual and monthly customer bills :type bill_df:
dataframe :param bill_metadata: dictionary of GLD metadata including tarrif and building type for each meter
:type bill_metadata: dict

Returns
dictionary of customers annual energy bill

Return type
customer_annual_bill (dict)

tesp_support.dsot.dso_rate_making.read_meters(metadata, dir_path, folder_prefix, dso_num, day_range,
SF, dso_data_path)

Determines the total energy consumed and max power consumption for all meters within a DSO for a series
of days. Also collects information on day ahead and real time quantities consumed by transactive customers.
Creates summation of these statistics by customer class. :param metadata: metadata structure for the DSO to
be analyzed :type metadata: dict :param dir_path: directory path for the case to be analyzed :type dir_path: str
:param folder_prefix: prefix of GLD folder name (e.g. ‘TE_base_s’) :type folder_prefix: str :param dso_num:
number of the DSO folder to be opened :type dso_num: str :param day_range: range of days to be summed (for
example a month). :type day_range: list :param SF: Scaling factor to scale GLD results to TSO scale (e.g. 1743)
:type SF: float

Returns
dataframe of energy consumption and max 15 minute power consumption for each month and to-
tal energysum_df: dataframe of energy consumption summations by customer class (residential,
commercial, and industial) saves the two dataframe above to an h5 file in the dir_path

Return type
meter_df

tesp_support.dsot.ev_agent module

Class that controls the Electric Vehicle

Implements the optimum schedule of charging and discharging DA; generate the bids for DA and RT; monitor and
supervisory control of GridLAB-D environment element.

The function call order for this agent is:
initialize()
set_price_forecast(forecasted_price)
Repeats at every hour:
¢ formulate_bid_da() {return BID}
* set_price_forecast(forecasted_price)
Repeats at every 5 min:
* set_battery_SOC(msg_str) {updates C_init}
e formulate_bid_rt() {return BID}
* inform_bid(price) {update RTprice}
* bid_accepted() {update inv_P_setpoint and GridLAB-D P_out if needed}

5.3. tesp_support package 243

TESP Documentation, Release 1.0

class tesp_support.dsot.ev_agent.EVDSOT (ev_dict, inv_properties, key, model_diag_level, sim_time,
solver)

Bases: object
This agent manages the electric vehicle (ev)
Parameters

e ev_dict (dict)
e inv_properties (dict)
* key (str)
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable
e solver (str)

Initialize from Args

name

name of this agent

Type

str
Rc
rated charging power in kW for the battery

Type
float

Rd
rated discharging power in kW for the battery

Type

float
Lin
battery charging loss in %

Type
float

Lout
battery discharging loss in %

Type

float
Cmin
minimum allowable stored energy in kWh (state of charge lower limit)

Type
float

Cmax

maximum allowable stored energy in kWh (state of charge upper limit)

Type

float

244 Chapter 5. References

TESP Documentation, Release 1.0

Cinit
initial stored energy in the battery in kWh

Type

float
evCapacity
battery capacity in kWh

Type
float

batteryLifeDegFactor

constant to model battery degradation

Type

float
windowLength

length of day ahead optimization period in hours (e.g. 48-hours)

Type
int

dayAheadCapacity
% of battery capacity reserved for day ahead bidding

Type

float
No initialization required

bidSpread
this can be used to spread out bids in multiple hours. When set to 1 hour (recommended), it’s effect is none

Type

int

location of P in bids

Type
int

location of Q in bids

Type
int
f DA

forecasted prices in $/kWh for all the hours in the duration of windowLength

Type
float) (1 X windowLength

ProfitMargin_slope
specified in % and used to modify slope of bid curve. Set to O to disable

Type
float

5.3. tesp_support package 245

TESP Documentation, Release 1.0

ProfitMargin_intercept

specified in % to generate a small dead band (i.e., change in price does not affect quantity). Set to O to

disable
Type
float
pm_hi
Highest possible profit margin in %
Type
float
pm_lo
Lowest possible profit margin in %
Type
float

RT_state_maintain
true if battery must maintain charging or discharging state for 1 hour

Type
bool

RT_state_maintain_flag

(0) not define at current hour (-1) charging (+1) discharging

Type
int
RT_flag
if True, has to update GridLAB-D

Type
bool

inv_P_setpoint

next GridLAB-D inverter power output

Type
float

optimized_Quantity
Optimized quantity

Type
float) (1 X Window Length

#not used if not biding DA

prev_clr_Quantity

cleared quantities (kWh) from previous market iteration for all hours

Type
float) (1 X Window Length

Chapter 5. References

TESP Documentation, Release 1.0

prev_clr_Price

cleared prices ($/kWh) from previous market iteration

Type
float) (1 X windowLength

BindingObjFunc

if True, then optimization considers cleared price, quantities from previous iteration in the objective func-

tion

Type
bool

DA_cleared_price(price)
Set the DA _cleared_price attribute

Parameters
price (float) — cleared price in $/kWh

DA_model_parameters (sim_time)
DA_optimal_quantities()
Generates Day Ahead optimized quantities for EV

Returns

Optimal quantity from optimization for all hours of the window specified by windowLength

Return type
Quantity (float) (1 x windowLength)

RT_fix_four_points_range (BID, QI, Qu)
Verify feasible range of RT bid

Parameters
e BID (float) ((1,2)X4)- 4 point bid
. Ql
« Qu

Returns
4 point bid only the feasible range

Return type
BIDr (float) ((1,2)X4)

RT_gridlabd_set_P(model_diag_level, sim_time)
Update variables for ev output “inverter”

Parameters
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable
inv_P_setpoint is a float in W

bid_accepted(current_time)
Update the P and Q settings if the last bid was accepted

Returns
True if the inverter settings changed, False if not.

5.3.

tesp_support package

247

TESP Documentation, Release 1.0

Return type
bool

con_rule_eql(m, i)
con_rule_eq2(m, i)
con_rule_eq3(m, i)
con_rule_eq4 (m, i)
con_rule_inel(m, i)
con_rule_ine2 (m, i)
formulate_bid_da()

Formulate 4 points of P and Q bids for the DA market

Function calls “DA_optimal_quantities” to obtain the optimal quantities for the DA market. With the quan-
tities, the 4 point bids are formulated.

Before returning the BID the function resets “RT_state_maintain_flag” which, if RT_state_maintain is
TRUE, the battery will be forced to keep its state (i.e., charging or discharging).

Returns
store last DA market bids

Return type
BID (float) (((1,2)X4) X windowLength)

formulate_bid_rt(Q)
Formulates RT bid

Uses the last 4 point bid from DA market and consider current state of charge of the ev. Will change points
to change points for feasible range of Qmin Qmax points if necessary. Furthermore, allows a maximum
deviation of +/-100% from the DA plan.

Returns
bid in Real Time market

Return type
realTimeBid (float) ((1,2) x 4)

from_P_to_Q_ev(BID, PRICE)

Convert the 4 point bids to a quantity with the known price
Parameters
e BID (float) ((1,2)X4)-4 pointbid
e PRICE (float) — cleared price in $/kWh

Returns
_quantity -> active power (-) charging (+) discharging

Return type
float

get_car_home_duration(cur_secs, interval)
Return the duration of car at home during the given ‘interval’ seconds starting from cur_secs

Parameters

* cur_secs — (seconds) current (starting) time with reference of midnight as 0

248 Chapter 5. References

TESP Documentation, Release 1.0

e interval - (seconds) duration in which status needs to be estimated
Returns

duration in seconds for which car is at home in given interval
get_uncntrl_ev_load(sim_time)
Function returns 48-hour forecast of ev load in base case w/o optimization

Parameters
sim_time (datetime)

Returns
48-hour forecast of ev load in base case w/o optimization
Return type
list
inform_bid(price)
Set the cleared_price attribute

Parameters
price (float) — cleared price in $/kWh
is_car_home(cur_secs)

Is the Car is at home

Parameters
cur_secs — current time in seconds

Returns
if car is at home at cur_secs is True or otherwise False

Return type
bool

is_car_leaving_home (cur_secs, interval)
Tells if car is leaving from home during the given ‘interval’

Parameters

* cur_secs — (seconds) current (starting) time with reference of midnight as 0
¢ interval — (seconds) duration in which status needs to be estimated

Returns

if car is leaving from home during the given ‘interval’
seconds starting from cur_secs is True or otherwise False

Return type
bool

obj_rule(m)
set_ev_SO0C(msg_str, model_diag_level, sim_time)
Set the ev state of charge
Updates the self.Cinit of the battery
Parameters
* msg_str (str)— message with ev SOC in percentage

* model_diag_level (int) — Specific level for logging errors; set it to 11

5.3. tesp_support package 249

TESP Documentation, Release 1.0

e sim_time (str) — Current time in the simulation; should be human-readable

set_price_forecast (forecasted_price)
Set the f_DA attribute

Parameters
forecasted_price (float x 48)— cleared price in $/kWh

test_function()

Test function with the only purpose of returning the name of the object

tesp_support.dsot.ev_agent.test()
Testing

Makes a single battery agent and run DA

tesp_support.dsot.forecasting module

Class responsible for forecasting

Implements the substation level DA price forecast and load forecast. Accesses forecast data using the schedule server;
see “schedule_server.py” for further implementation details.

class tesp_support.dsot.forecasting.Forecasting(port, config_Q)
Bases: object

This Class perform the forecast
Parameters
* TODO (#) — update inputs
* TODO — Load base case run files
TODO

update attributes

add_skew_scalar (datafr, N_skew, N_scalar)

Skew the values with given seconds and multiply by scalar in the whole year dataframe

Args: datafr (DataFrame): dataframe created with the schedule name for a year N_skew (int): number of
seconds to skew either (+ or -)

calc_solar_flux(cpt, day_of _yr, lat, sol_time, dnr_i, dhr_i, vertical_angle)
calc_solargain(day_of yr, time, dnr, dhr, lat, lon, tz_offset)
correcting_Q_forecast_10_AM(Q I10_AM, offset, day_of week)

Correcs the quantity submited to the wolsale market at 10 AM

Parameters
Q_10_AM (1ist of 24 float)— DA quantities

Returns
Corrected 10 AM Quantities

forecasting_schedules (name, time, len_forecast=48)

250 Chapter 5. References

TESP Documentation, Release 1.0

get_internal_gain_forecast (skew_scalar, time, extra_forecast_hours=0)

Forecast the electric zip_load and internal gain of all zip loads of a house by reading schedule files and
applying skew. Forecast is for 48-hours ahead from start time :param skew_scalar: dictionary containing
‘zip_skew’, ‘zip_scalar’ and ‘zip_heatgain_fraction’ for each zip load :param ‘zip_skew’ is a scalar and
same for all type of zip loads for the given house. ‘zip_scalar’ and ‘zip_heatgain_fraction’: :param are
dictionary containing different values for each tyoe of zip load: :param time: Datetime format: forecast
start time :param extra_forecast_hours: (int) number of hours for which forecast needs to be stored. For
example if it is 24, then :param we need to get forecast for 48+24=72 hours so that there is no need to come
back to this function for next 24-hours.:

Returns
list of (48+extra_forecast_hours) values of total zipl loads and total internal gain due to zip
loads

get_solar_forecast (time, dso_num)
get_solar_gain_forecast (climate_conf, current_time)
get_substation_unresponsive_industrial_load_forecast (peak_load=3500.0)
Get substation unresponsive industrial load forecast
Args:
peak_load (float): peak load in kWh
Returns
forecast of next 48-hours unresponsive load
Return type
base_run_load (float x 48)

get_substation_unresponsive_load_forecast (peak_load=7500.0)

Get substation unresponsive load forecast

TODO: Update to model that make use of the base case run files TODO: Get weather forecast from weather

agent
Parameters
peak_load (float) — peak load in kWh
Returns
forecast of next 48-hours unresponsive load
Return type

base_run_load (float x 48)
get_waterdraw_forecast (skew_scalar, time)
static initialize_schedule_dataframe(star:_time, end_time)
Initialize the data frame for one year
Parameters
e start_time (datetime, str)— time in str format - DD/MM/YYY HH:MT:SS
e end_time (datetime, str)-time in str format - DD/MM/YYY HH:MT:SS

make_dataframe_schedule (filename, schedule_name)

Reads .glm files with multiple schedule names and makes dataframe for a year for given schedule name

Parameters

5.3. tesp_support package 251

TESP Documentation, Release 1.0

¢ filename (str)— name of glm file to be loaded
¢ schedule_name (str)— name of the schedule to be laoded
set_retail_price_forecast (DA_SW_prices)
Set substation price forecast
Nonsummable diminishing.

Parameters
DA_SW_prices (float x 48) - cleared price in $/kWh from the last shifting window run

Returns
forecasted prices in $/kWh for the next 48-hours

Return type
forecasted_price (float x 48)

set_sch_year (year)

set_solar_diffuse_forecast (fics_str)

Set the 48-hour solar diffuse forecast :param param fncs_str: solar_diffuse_forecast ([float x 48]):
set_solar_direct_forecast (fncs_str)

Set the 48-hour solar direct forecast :param param fncs_str: solar_direct_forecast ([float x 48]):
set_temperature_forecast (fiucs_str)

Set the 48-hour temperature forecast

Parameters
fncs_str — temperature_forecast ([float x 48]): predicted temperature in F

tesp_support.dsot.forecasting.test()

tesp_support.dsot.gen_map module

tesp_support.dsot.gen_map.prepare_network (node, node_col, high_renewables_case, zero_pmin=False,
zero_index=False, on_ehv=True, split_start_cost=False,
high_ramp_rates=False, coal=True)

tesp_support.dsot.generator_balance_sheet_func module

@author: yint392

tesp_support.dsot.generator_balance_sheet_func.generator_balance_sheet_annual (generator_num,
gen_type,
meta_path,
system_path,
path_to_write,
write_to_txt=False,
write_to_JSON=Fualse)

252 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.glm_dictionary module

Functions to create metadata from a GridLAB-D input (GLM) file

Metadata is written to a JSON file, for convenient loading into a Python dictionary. It can be used for agent con-
figuration, e.g., to initialize a forecasting model based on some nominal data. It’s also used with metrics output in
post-processing.

Public Functions:

glm_dict
Writes the JSON metadata file.

tesp_support.dsot.glm_dictionary.append_include_file (lines, fname)

tesp_support.dsot.glm_dictionary.ercotMeterName (objname)
Enforces the meter naming convention for ERCOT

Replaces anything after the last _ with mir.

Parameters
objname (str) — the GridLAB-D name of a house or inverter

Returns
The GridLAB-D name of upstream meter

Return type
str

tesp_support.dsot.glm_dictionary.glm_dict (name_root, config=None, ercot=False)
Writes the JSON metadata file from a GLM file

This function reads name_root.glm and writes [name_root]_glm_dict.json The GLM file should have some me-
ters and triplex_meters with the bill_mode attribute defined, which identifies them as billing meters that parent
houses and inverters. If this is not the case, ERCOT naming rules can be applied to identify billing meters.

Parameters
* name_root (str) — path and file name of the GLM file, without the extension
e config (dict)

* ercot (bool) — request ERCOT billing meter naming. Defaults to false. — THIS NEEDS
TO LEAVE THIS PLACE

* te30 (bool) — request hierarchical meter handling in the 30-house test harness. Defaults to
false. — THIS NEEDS TO LEAVE THIS PLACE

tesp_support.dsot.glm_dictionary.ti_enumeration_string(tok)
if thermal_integrity_level is an integer, convert to a string for the metadata

5.3. tesp_support package 253

TESP Documentation, Release 1.0

tesp_support.dsot.helpers_dsot module

Utility functions for use within tesp_support, including new agents. This is DSO+T specific helper functions

class tesp_support.dsot.helpers_dsot.Curve(pricecap, num_samples)
Bases: object

Accumulates a set of price, quantity bidding curves for later aggregation
Parameters
* pricecap (float) — the maximum price that is allowed in the market, in $/kWh

* num_samples (int) — the number of sampling points, describes how precisely the curve is
sampled

prices

array of prices, in $/kWh

Type
[float]
quantities

array of quantities, in kW

Type
[float]

uncontrollable_only

equals to 1 when there is only uncontrollable load demand bids in the market

Type
bool

curve_aggregator (identity, bid_curve)

Adding one more bid curve to the aggregated seller or buyer curve

Args:
identity (str): identifies whether the bid is collected from a “Buyer” or “Seller” bid_curve
([list]): a nested list with dimension (m, 2), with m equals 2 to 4

curve_aggregator_DSO (substation_demand_curve)

Adding one substation bid curve to the aggregated DSO bid curve,
applied when then curve instance is a DSO demand curve

Args:
substation_demand_curve(Curve): a curve object representing the aggregated substation demand
curve

update_price_caps()
Update price caps based on the price points

class tesp_support.dsot.helpers_dsot.HvacMode (value)
Bases: IntEnum

Describes the operating mode of the HVAC
COOLING = 0

HEATING = 1

254 Chapter 5. References

TESP Documentation, Release 1.0

class tesp_support.dsot.helpers_dsot.MarketClearingType (value)
Bases: IntEnum

Describes the market clearing type

CONGESTED = 1

FAILURE = 2

UNCONGESTED = 0
tesp_support.dsot.helpers_dsot.curve_bid_sorting(identity, bid_curve)

Sorting the 4-point curve bid primarily on prices and secondarily on quantities

For “Buyer”, the bid prices are ordered descendingly and bid quantities are ordered ascendingly; For “Seller”,
both the bid prices and the bid quantities are ordered descendingly;

Parameters
» identity (str) — identifies whether the bid is collected from a “Buyer” or “Seller”
e bid_curve ([1ist]) — unsorted curve bid

Outputs:
sorted_bid_curve ([list]): sorted curve bid

tesp_support.dsot.helpers_dsot.get_intersect(al, a2, bl, b2)
tesp_support.dsot.helpers_dsot.resample_curve(x_vec, y_vec, min_q, max_q, num_samples)
tesp_support.dsot.helpers_dsot.resample_curve_for_market (x_vec_I,y_vec_I,x_vec_2,y_vec_2)
tesp_support.dsot.helpers_dsot.resample_curve_for_price_only(x_vec_I, x_vec_2,y_vec_2)
tesp_support.dsot.helpers_dsot.test()

tesp_support.dsot.helpers_dsot.write_dsot_management_script (master_file, case_path,
system_config=None,
substation_config=None,
weather_config=None)

Write experiment management scripts from JSON configuration data, linux and helics only
Reads the simulation configuration file or dictionary and writes

* run.{sh, bat}, simple run script to launch experiment

* Kkill.{sh, bat}, simple run script to kill experiment

e clean.{sh, bat}, simple run script to clean generated output files from the experiment

Parameters
» master_file (str) — name of the master file to the experiment case
» case_path (str) — path to the experiment case
» system_config (dict) — configuration of the system for the experiment case
» substation_config (dict) - configuration of the substations in the experiment case

» weather_config (dict) - configuration of the climates being used

5.3. tesp_support package 255

TESP Documentation, Release 1.0

tesp_support.dsot.helpers_dsot.write_dsot_management_script_f (master_file, case_path,
system_config=None,
substation_config=None,
weather_config=None)

Write experiment management scripts from JSON configuration data, windows and linux, fncs only
Reads the simulation configuration file or dictionary and writes

* run.{sh, bat}, simple run script to launch experiment

* Kkill.{sh, bat}, simple run script to kill experiment

¢ clean.{sh, bat}, simple run script to clean generated output files from the experiment

Parameters
» master_file (str) — name of the master file to the experiment case
» case_path (str) — path to the experiment case
» system_config (dict) — configuration of the system for the experiment case
» substation_config (dict) - configuration of the substations in the experiment case
» weather_config (dict) - configuration of the climates being used

tesp_support.dsot.helpers_dsot.write_management_script (archive_folder, case_path, outPath,
gld_Debug, run_post)

tesp_support.dsot.helpers_dsot.write_mircogrids_management_script (master_file, case_path,
system_config=None,
substation_config=None,
weather_config=None)

Write experiment management scripts from JSON configuration data, linux ans helics only
Reads the simulation configuration file or dictionary and writes

e run.{sh, bat}, simple run script to launch experiment

e kill.{sh, bat}, simple run script to kill experiment

e clean.{sh, bat}, simple run script to clean generated output files from the experiment

Parameters
* master_file (str) — name of the master file to the experiment case
» case_path (str) — path to the experiment case
» system_config (dict) — configuration of the system for the experiment case
» substation_config (dict) — configuration of the substations in the experiment case

» weather_config (dict) — configuration of the climates being used

tesp_support.dsot.helpers_dsot.write_players_msg(case_path, sys_config, dt)

256 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.hvac_agent module

Class that ...
TODO: update the purpose of this Agent

class tesp_support.dsot.hvac_agent.HVACDSOT (hvac_dict, house_properties, key, model_diag_level,
sim_time, solver)

Bases: object

This agent ...

TODO: update the purpose of this Agent

Parameters

e hvac_dict (dict)
e house_properties (dict)
e key (str)
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str)— Current time in the simulation; should be human-readable
e solver (str)

TODO

update attributes for this agent

DA_model_parameters (moh3, hod3, dow3)

self.basepoint_cooling = 73.278 self.temp_min_cool = self.temp_min_cool + self.basepoint_cooling
self.temp_max_cool = self.temp_max_cool + self.basepoint_cooling self.thermostat_mode = ‘Cooling’

if self.thermostat_mode == ‘Cooling’:
temp_min_48hour = self.temp_min_cool temp_max_48hour = self.temp_max_cool

else:
temp_min_48hour = self.temp_min_heat temp_max_48hour = self.temp_max_heat

DA_optimal_quantities()

Generates Day Ahead optimized quantities for Water Heater according to the forecasted prices and water
draw schedule, called by DA_formulate_bid function

Returns
Optimized quantities for each hour in the DA bidding horizon, in kWh

Return type
Quantity (list) (1 x windowLength)

bid_accepted(model_diag_level, sim_time)
Update the thermostat setting if the last bid was accepted

The last bid is always “accepted”. If it wasn’t high enough, then the thermostat could be turned up.
Parameters
* model_diag_level (int) — Specific level for logging errors; set to 11
¢ sim_time (str) — Current time in the simulation; should be human-readable

Returns
True if the thermostat setting changes, False if not.

5.3. tesp_support package 257

TESP Documentation, Release 1.0

Return type
bool

calc_etp_model ()

Sets the ETP parameters from configuration data

References

Thermal Integrity Table Inputs and Defaults
calc_solar_£flux(cpt, day_of yr, lat, sol_time, dnr_i, dhr_i, vertical_angle)
calc_solargain(day_of yr, start_hour, dnr, dhr, lat, lon, tz_offset)
calc_thermostat_settings (model_diag_level, sim_time)
Sets the ETP parameters from configuration data
Parameters
* model_diag_level (int) — Specific level for logging errors; set to 11

¢ sim_time (str) — Current time in the simulation; should be human-readable

References

Table 3 - Easy to use slider settings

change_basepoint (moh, hod, dow, model_diag_level, sim_time)
Updates the time-scheduled thermostat setting

Parameters
¢ moh (int) — the minute of the hour from 0 to 59
¢ hod (int) — the hour of the day, from 0 to 23
* dow (int) — the day of the week, zero being Monday
» model_diag_level (int) — Specific level for logging errors; set to 11
¢ sim_time (str) — Current time in the simulation; should be human-readable

Returns
True if the setting changed, False if not

Return type
bool

change_solargain(moh, hod, dow)

Updates the pre-recorder solar gain
Parameters
¢ moh (int) — the minute of the hour from 0 to 59
* hod (int) — the hour of the day, from 0 to 23
* dow (int) — the day of the week, zero being Monday

Updates:
solar_gain

258 Chapter 5. References

http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide#Thermal_Integrity_Table_Inputs_and_Defaults
http://gridlab-d.shoutwiki.com/wiki/Transactive_controls

TESP Documentation, Release 1.0

con_rule_eql(m, t)
formulate_bid_da()
Formulate windowLength hours 4 points PQ bid curves for the DA market

Function calls DA_optimal_quantities to obtain the optimal quantities for the DA market. With the quanti-
ties, a 4 point bids are formulated for each hour.

Returns
BID (float) (windowLength X 4 X 2): DA bids to be sent to the retail DA market

formulate_bid_rt (model_diag_level, sim_time)
Bid to run the air conditioner through the next period for real-time

Parameters
» model_diag_level (int) — Specific level for logging errors; set to 11
e sim_time (str) — Current time in the simulation; should be human-readable

Returns
[bid price $/kwh, bid quantity kW] x 4

Return type
[[float, float], [float, float], [float, float], [float, float]]

get_scheduled_setpt (imoh3, hod4, dow3)

Parameters
¢ moh3 — (int): the minute of the hour from 0 to 59
¢ hod4 - (int): the hour of the day, from 0 to 23
* dow3 — (int): the day of the week, zero being Monday

get_solargain(climate_conf, current_time)

estimates the nominal solargain without solargain_factor
Parameters
* climate_conf — latitude and longitude info in a dict
e current_time — the time for which solargain needs to be estiamted
get_uncntrl_hvac_load (moh, hod, dow)
inform_bid(price)
Set the cleared_price attribute

Parameters
price (float) — cleared price in $/kwh

obj_rule(m)
set_air_temp (fucs_str, model_diag_level, sim_time)
Sets the air_temp attribute
Parameters
¢ fncs_str (str) — FNCS message with temperature in degrees Fahrenheit
» model_diag_level (int) — Specific level for logging errors; set to 11

e sim_time (str) — Current time in the simulation; should be human-readable

5.3. tesp_support package 259

TESP Documentation, Release 1.0

set_da_cleared_quantity(BID, PRICE)

Convert the 4 point bids to a quantity with the known price
Parameters
e BID (float) ((1,2)X4)-4 pointbid
» PRICE (float) — cleared price in $/kWh

Returns
cleared quantity

Return type
quantity (float)

set_house_load (fncs_str)

Sets the hvac_load attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with load in kW

set_humidity (fics_str)
Sets the humidity attribute

Parameters
fncs_str (str) — FNCS message with humidity

set_humidity_forecast (fiucs_str)
Set the 48-hour price forecast and calculate min and max

Parameters
fncs_str — temperature_forecast ([float x 48]): predicted temperature in F

set_hvac_load (fncs_str)
Sets the hvac_load attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with load in kW

set_hvac_state(fncs_str)

Sets the hvac_on attribute

Parameters
fncs_str (str) — FNCS message with state, ON or OFF

set_internalgain_forecast (internalgain_array)

Set the 48-hour internalgain forecast :param internalgain_array: internalgain_forecast ([float x 48]): fore-
casted internalgain in BTu/h

set_price_forecast (price_forecast)
Set the 24-hour price forecast and calculate mean and std

Parameters
price_forecast ([float x 24]) - predicted price in $/kwh

set_solar_diffuse(fincs_str)

Sets the solar diffuse attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with solar irradiance

260 Chapter 5. References

TESP Documentation, Release 1.0

set_solar_direct (fncs_str)

Sets the solar irradiance attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with solar irradiance

set_solargain_forecast (solargain_array)
Set the 48-hour solargain forecast

Parameters
solargain_array — solargain_forecast ([float x 48]): forecasted solargain in BTu/(h*sf)

set_temperature (fics_str)

Sets the outside temperature attribute

Parameters
fncs_str (str) — FNCS message with outdoor temperature in F

set_temperature_forecast (fics_str)

Set the 48-hour price forecast and calculate min and max

Parameters
fncs_str — temperature_forecast ([float x 48]): predicted temperature in F

set_voltage (fincs_str)

Sets the mtr_v attribute

Parameters
fncs_str (str) — FNCS message with meter line-neutral voltage

set_wh_load (fncs_str)
Sets the wh_load attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with load in kW

set_zipload_forecast (forecast_ziploads)

Set the 48-hour zipload forecast :param forecast_ziploads: array of zipload forecast
Returns: nothing, sets the property

store_full_internalgain_forecast (forecast_internalgain)

Parameters
forecast_internalgain — internal gain forecast to store for future

Returns: sets the variable so that it can be used later hours as well

store_full_zipload_forecast (forecast_ziploads)

Parameters
forecast_ziploads — internal gain forecast to store for future

Returns: sets the variable so that it can be used later hours as well
temp_bound_rule(m,)
test_function()

Test function with the only purpose of returning the name of the object

update_temp_limits_da(cooling_setpt, heating_setpt)

5.3. tesp_support package 261

TESP Documentation, Release 1.0

tesp_support.dsot.hvac_agent.test()
Testing

Makes a single hvac agent and run DA

tesp_support.dsot.load_less_solar module

Creates a new 200-bus load profile that is the original load profile less the distributed solar generation for that bus. For
the hourly profile the solar data that is used is the hourly forecast data. For the five-minute profile the actual Sminute
solar data is used. Users can select whether they need to generate hourly or five-minute datasets.

An 8-bus aggregated profile is also created (hourly or five-minute) automatically after the full 200-bus load dataset has
been created.

class tesp_support.dsot.load_less_solar.Mode(value)

Bases: Enum
An enumeration.

FIVE_MINUTE = 1
HOUR = 0

tesp_support.dsot.load_less_solar.create_8_node_load_less_solar (dso_meta, load_dir,
input_load_filename,
output_load_filename)

Using information in the dso_meta dictionary, this function aggregates the 200-bus load-less-solar values into
the 8-bus values. The resulting dataset is written out to file.

Parameters
* dso_meta — DSO metadata defining how 200-node buses map to 8-node buses
* load_dir — Directory with input load data file
e input_load_filename — Filename only, no path
» output_load_filename — Filename only, no path

Returns
(none)

tesp_support.dsot.load_less_solar.create_load_less_solar (input_load_filename,
output_load_filename, solar_dir,
load_dir, mode)

Hourly data is used for the DA market and needs to subtract the distributed generation solar forecast. 5-minute
data is RT and needs to subtract the actual solar production.

Sample hourly load data:
Hour_End,Bus0,Bus1,Bus2,Bus3,Bus4,Bus5,Bus6,... 12/29/2015 0:00,3659.8,248.49,1652,4415.4,201.28,50.374,83.668,. .

12/29/2015 1:00,3659.8,248.49,1652,4415.4,201.28,50.374,83.668,. .. 12/29/2015
2:00,3603.9,246.54,1626.8,4348,198.2,49.784,82.688,. .. 12/29/2015
3:00,3577.2,246.19,1614.8,4315.8,196.74,49.431,... 12/29/2015 4:00,3595.8,247.46,1623.1,4338.1,197.76,49.543,....
12/29/2015 5:00,3666,249.03,1654.8,4422.9,201.62,50.085,83.188,. .. 12/29/2015

6:00,3795.8,253.74,1713.4,4579.4,208.75,51.893,... 12/29/2015 7:00,3931.7,260.87,1774.8,4743.5,216.23,53.583,...

Sample hourly DSO distributed solar forecast data:
000000001.0792.518 3.499 6.463

262 Chapter 5. References

TESP Documentation, Release 1.0

Sample 5-minute load data:
Seconds,Bus1,Bus2,Bus3,Bus4,Bus5,Bus6,Bus7,Bus8, 0,3659.8,248.5,1652,4415.4,201.3,50.4,83.7,145.1

300,3659.8,248.5,1652,4415.4,201.3,50.4,83.7,145.1 600,3659.8,248.5,1652,4415.4,201.3,50.4,83.7,145.1
900,3659.8,248.5,1652,4415.4,201.3,50.4,83.7,145.1 1200,3659.8,248.5,1652,4415.4,201.3,50.4,83.7,145.1

Sample 5-minute solar data:
12/29/15 0:00,0 12/29/15 0:05,0 12/29/15 0:10,0 12/29/15 0:15,0 12/29/15 0:20,0 12/29/15 0:25,0 12/29/15

0:30,0 12/29/15 0:35,0 12/29/15 0:40,0 12/29/15 0:45,0 12/29/15 0:50,0 12/29/15 0:55,0 12/29/15 1:00,0

Parameters
* load_filename - Filename of input load data
e solar_dir — Directory of input solar data
* load_dir — Directory of input load data

Returns
list of list of load data less solar

Return type
load_data

tesp_support.dsot.load_less_solar.data(self, message, *args, **kws)

tesp_support.dsot.load_less_solar.parse_DSO_metadata_Excel (dso_metadata_path_Fxcel,
worksheet_name)

This function parses the DSO metadata which is contained in a JSON and Excel files. Most of the metadata is in
the JSON but one crucial piece of information is in the Excel file: the mapping of the 200-node to 8-node buses.

Sample of the bus-generator file: (Note the first columns is empty)
200 bus 8 bus
112131415161...
Parameters
» dso_metadata_path_Excel (str)
e parsed. (containing the metadata to be)
» worksheet_name (str)
e metadata (containing the)

Returns
dso_meta (list of dicts) - One dictionary per DSO with appropriate metadata captured.

tesp_support.dsot.load_less_solar.read_load_file(load_path)

Parameters
load_path — Path to load file that is being read in

Returns
list of lists with the headers and load data

Return type
load_data

5.3. tesp_support package 263

TESP Documentation, Release 1.0

tesp_support.dsot.load_less_solar.write_out_load_file(load_data, out_path)
Writes out load data to CSV file. Assumes a list of lists format.

Parameters
» load_data — Load data to be written to CSV.
* out_path - Path and filename of output file

Returns:

tesp_support.dsot.plots module

tesp_support.dsot.plots.DSO_loadprofiles(dso_num, dso_range, day_range, case, dso_metadata_file,
metadata_path, plot_weather=True)

For a specified dso range and case this function will analyze the ratios of Res, Comm, and Industrial.
Parameters
* dso_num (str) — number of the DSO folder to be opened
* dso_range (range) — the DSO range that the data should be analyzed
» day_range (list) — range of days to be summed (for example a month)
e case (str) — folder extension of case of interest
* dso_metadata_file (str) — folder extension and file name for DSO metadata

Returns
dataframe with analysis values saves values to file

tesp_support.dsot.plots.RCI_analysis(dso_range, case, data_path, metadata_path, dso_metadata_{file,
energybill=False)

For a specified dso range and case this function will analyze the ratios of Res, Comm, and Industrial. :param
dso_range: the DSO range that the data should be analyzed :type dso_range: list :param case: folder extension of
case of interest :type case: str :param data_path: :type data_path: str :param metadata_path: :type metadata_path:
str :param dso_metadata_file: DSO and Comm Building metadata :type dso_metadata_file: str :param energy-
bill: :type energybill: bool

Returns
dataframe with analysis values saves values to file

tesp_support.dsot.plots.TicTocGenerator()
tesp_support.dsot.plots.amenity_loss(gld_metadata, dir_path, folder_prefix, dso_num, day_range)
Determines the loss of amenity metrics (aka unmet hours) for HVAC and WH.
Parameters

* gld_metadata (dict) — gld metadata structure for the DSO to be analyzed

» dir_path (str) — directory path for the case to be analyzed

» folder_prefix (str) — prefix of GLD folder name (e.g. ‘/TE_base_s’)

* dso_num (str) — number of the DSO folder to be opened

» day_range (range) — range of days to be summed (for example a month).

Returns
dataframe of loss of amenity metrics for HVAC and WH

264 Chapter 5. References

TESP Documentation, Release 1.0

Return type
amenity_df

tesp_support.dsot.plots.annual_amenity (metadata, month_list, folder_prefix, dso_num)

Creates a dataframe of monthly energy consumption values and annual sum based on monthly hS files. :param
month_list: list of lists. Each sub list has month name (str), directory path (str) :type month_list: list :param
folder_prefix: prefix of GLD folder name (e.g. ‘/TE_base_s’) :type folder_prefix: str :param dso_num: number
of the DSO folder to be opened :type dso_num: str

Returns
dataframe of energy consumption and max 15 minute power consumption for each month and
total year_energysum_df: dataframe of energy consumption summations by customer class (res.,
commercial, and indust)

Return type
year_meter_df

tesp_support.dsot.plots.bldg_load_stack(dso, day_range, case, agent_prefix, gld_prefix, metadata_path,
daily_dso_plots=False)

For a specified dso, system, variable, and day this function will load in the required data, plot the daily profile
and save the plot to file. :param dso: the DSO that the data should be plotted for (e.g. ‘1) :type dso: int :param
day_range: range of starting day and ending day of data to include :type day_range: range :param case: folder
extension of case of interest :type case: str :param agent_prefix: folder extension for agent data :type agent_prefix:
str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str :param metadata_path: path of
folder containing metadata :type metadata_path: str :param daily_dso_plots: :type daily_dso_plots: bool

Returns
saves daily profile plot to file

tesp_support.dsot.plots.bldg_stack_plot(dso_range, day_range, case, metadata_path)

For a specified dso, system, variable, and day this function will load in the required data, plot the daily profile
and save the plot to file. :param dso_range: :type dso_range: list :param day_range: range of starting day and
ending day of data to include :type day_range: range :param case: folder extension of case of interest :type case:
str :param metadata_path: path of folder containing metadata :type metadata_path: str

Returns
saves daily profile plot to file

tesp_support.dsot.plots.customer_comparative_analysis(case_data, comp_data, case_path,
comp_path, dso_num, dso_metadata_path,
month="'sum’', slice=None)

Creates a comparison of change in energy consumption and anemities for all customers :param case_data: path
location for reference case with annual energy and amenity data :type case_data: str :param comp_data: path
location for comparison case with annual energy and amenity data :type comp_data: str :param case_path: path
location for reference case with simulation metadata for agents/GLD etc. :type case_path: str :param comp_path:
path location for comparison case with simulation metadata for agents/GLD etc. :type comp_path: str :param
dso_num: dso to be plotted :type dso_num: str :param dso_metadata_path: path to location of DSO metadata
files :type dso_metadata_path: str :param month: month of annual analysis to be plotted. set to ‘sum’ to plot
aggregate of all data. :type month: str :param slice: sub set of data to be plotted (e.g. ‘residential’, ‘office’,
‘HVAC’ :type slice: str

Returns
saves plot to file.

tesp_support.dsot.plots.customer_meta_data(glm_meta, agent_meta, dso_metadata_path)

Update GLM dictionary with information from agent dictionary needed for customer billing.

Parameters

5.3. tesp_support package 265

TESP Documentation, Release 1.0

* glm_meta (dict) — dictionary of GridLAB-D information
* agent_meta (dict) — dictionary of transactive agent information
* dso_metadata_path (str) — location of metadata for commercial buildings

Returns
dictionary of GridLAB-D information

Return type
glm_meta (dict)

tesp_support.dsot.plots.daily_load_plots(dso, system, subsystem, variable, day, case, comp, agent_prefix,

gld_prefix)

For a specified dso, system, variable, and day this function will load in the required data, plot the daily profile
and save the plot to file. :param dso: the DSO that the data should be plotted for (e.g. ‘1) :type dso: str :param
system: the system to be plotted (e.g. ‘substation’, ‘house’, ‘HVAC_agent’) :type system: str :param subsystem:
the individual house to be plotted (e.g. ‘HousesA_hse_1") or the operator to be used if :type subsystem: str
param aggregating many houses: :type aggregating many houses: e.g. ‘sum’, ‘mean’ :param variable: variable
to be plotted from system dataframe (e.g. ‘cooling_setpoint’ or ‘real_power_avg’) :type variable: str :param day:
the day to plotted. :type day: str :param case: folder extension of case of interest :type case: str :param comp:
folder extension of a comparison case of interest. Optional - set to None to show just one case. :type comp: str
:param agent_prefix: folder extension for agent data :type agent_prefix: str :param gld_prefix: folder extension
for GridLAB-D data :type gld_prefix: str

Returns
saves daily profile plot to file

tesp_support.dsot.plots.daily_summary_plots(dso, system, subsystem, variable, day_range, case, comp,

oper, diff, denom, agent_prefix, gld_prefix)

For a specified day range, system, variable, and dso this function will load in the required data and plot the variable
for each day based on the operator and compare it to another case (optional). :param dso: the DSO that the data
should be plotted for (e.g. ‘1°) :type dso: str :param system: the system to be plotted (e.g. ‘substation’, ‘house’,
‘HVAC_agent’) :type system: str :param subsystem: the individual house to be plotted (e.g. ‘HousesA_hse_1") or
the operator to be used if :type subsystem: str :param aggregating many houses: :type aggregating many houses:
e.g. ‘sum, ‘mean’ :param variable: variable to be plotted from system dataframe (e.g. ‘cooling_setpoint’ or
‘real_power_avg’) :type variable: str :param day_range: range of the day indexes to be plotted. Day 1 has an
index of 0 :type day_range: range :param case: folder extension of case of interest :type case: str :param comp:
folder extension of comparison case of interest :type comp: str :param oper: operator for selecting a scalar value
to represent the daily range (e.g. ‘min, ‘max’, ‘mean’) :type oper: str :param diff: If True will plot the difference
between the baseline (case) and comparison (comp) :type diff: bool :param denom: denominator that values
should be divided by before plotting :type denom: value :param agent_prefix: folder extension for agent data
‘type agent_prefix: str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str

Returns
saves plots to file

tesp_support.dsot.plots.der_load_stack(dso, day_range, case, gld_prefix, metadata_path)

For a specified dso and day range this function will load in the required data, process the data for the stacked
DER loads and save the data to file. :param dso: the DSO that the data should be plotted for (e.g. ‘1) :type dso:
int :param day_range: the day range to plotted. :type day_range: range :param case: folder extension of case
of interest :type case: str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str :param
metadata_path: path of folder containing metadata :type metadata_path: str

Returns
saves dso DER loads data to file

266

Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.plots.der_stack_plot(dso_range, day_range, metadata_path, case, comp=None)

For a specified dso range and day range this function will load in the required data, plot the stacked DER loads
and save the plot to file. :param dso_range: the DSO range that should be plotted. :type dso_range: list :param
day_range: the day range to plotted. :type day_range: range :param metadata_path: path of folder containing
metadata :type metadata_path: str :param case: folder extension of case of interest :type case: str :param comp:
folder extension for reference case to be plotted in comparison :type comp: str

Returns
saves hdf and csv data files of combined dso data saves DER stack plot to file

tesp_support.dsot.plots.df reduction(df, subsystem, variable, format)

This utility slices a dataframe based on the subsystem (or aggregation) of interest. This is used for agent or
house data where there is multiple house data per timestep and reduction is needed before plotting data. :param
df: dataframe to be reduced :type df: dataframe :param subsystem: the individual house to be plotted (e.g.
‘HousesA_hse_1") or the operator to be used if :type subsystem: str :param aggregating many houses: :type
aggregating many houses: e.g. ‘sum’, ‘mean’ :param variable: variable to be plotted from system dataframe
(e.g. ‘cooling_setpoint’ or ‘real_power_avg’) :type variable: str :param format: flag as to whether the data is
GridLAB-D (‘gld’) or agent (‘agent’) as the format is slightly different. :type format: str

Returns
reduced dataframe

Return type
df (dataframe)

tesp_support.dsot.plots.dso_comparison_plot (dso_range, system, subsystem, variable, day, case,
agent_prefix, gld_prefix)

For a specified dso range, system, variable, and day this function will load in the required data, plot the variable
for all DSOs and save the plot to file. :param dso_range: the DSO range that the data should be plotted for
:type dso_range: range :param system: the system to be plotted (e.g. ‘substation’, ‘house’, ‘HVAC_agent’) :type
system: str :param subsystem: the individual house to be plotted (e.g. ‘HousesA_hse_1") or the operator to be
used if :type subsystem: str :param aggregating many houses: :type aggregating many houses: e.g. ‘sum, ‘mean’
:param variable: variable to be plotted from system dataframe (e.g. ‘cooling_setpoint’ or ‘real_power_avg’)
:type variable: str :param day: the day to plotted. :type day: str :param case: folder extension of case of interest
‘type case: str :param agent_prefix: folder extension for agent data :type agent_prefix: str :param gld_prefix:
folder extension for GridLAB-D data :type gld_prefix: str

Returns
saves dso comparison plot to file

tesp_support.dsot.plots.dso_forecast_stats(dso_range, day_range, case, dso_metadata_file, ercot_dir)

For a specified dso range and day range this function will load in the required data, plot forecast errors for all
for DSOs and save the plots to file. :param dso_range: the DSO range that the data should be plotted for :type
dso_range: list :param day_range: the day to plotted. :type day_range: range :param case: folder extension
of case of interest :type case: str :param dso_metadata_file: path and file name of the dso metadata file :type
dso_metadata_file: str :param ercot_dir: path location of the ercot and industial load metadata :type ercot_dir:
str

Returns
saves dso comparison plot to file

tesp_support.dsot.plots.dso_lmp_stats (month_list, output_path, renew_forecast._file)

For a specified dso range and list of month path information this function will load in the required data, and
summarize DSO LMPs versus loads for all months, and plot comparisons. :param month_list: list of lists. Each
sub list has month name (str), directory path (str) :type month_list: list :param output_path: path of the location
where output (plots, csv) should be saved :type output_path: str :param renew_forecast_file: path and name of
ercot renewable generation forecast csv file :type renew_forecast_file: str

5.3. tesp_support package 267

TESP Documentation, Release 1.0

Returns
saves dso load comparison plots to file saves csv of RT and DA loads and LMPs to file

tesp_support.dsot.plots.dso_load_stats(dso_range, month_list, data_path, metadata_path, plot=False)

For a specified dso range and list of month path information this function will load in the required data, and
summarize DSO loads for all months, plot comparisons, and find Qmax. :param dso_range: the DSO range that
the data should be plotted for :type dso_range: list :param month_list: list of lists. Each sub list has month name
(str), directory path (str) :type month_list: list :param data_path: path of the location where output (plots, csv)
should be saved :type data_path: str :param metadata_path: location of ercot load data :type metadata_path: str

Returns
saves dso load comparison plots to file saves summary of Qmax for each DSO to file

tesp_support.dsot.plots.dso_market_plot(dso_range, day, case, dso_metadata_file, ercot_dir)

For a specified dso range and day this function will load in the required data, plot standard market price and
quantity values all for DSOs and save the plots to file. :param dso_range: the DSO range that the data should
be plotted for :type dso_range: list :param day: the day to plotted. :type day: str :param case: folder extension
of case of interest :type case: str :param dso_metadata_file: path and file name of the dso metadata file :type
dso_metadata_file: str :param ercot_dir: path location of the ercot and industial load metadata :type ercot_dir:
str

Returns
saves dso comparison plot to file

tesp_support.dsot.plots.find_edge_cases(dso, base_case, day_range, agent_prefix, gld_prefix)

For a specified dso and case this function will return the day associated with a range of ‘edge cases’ for example
the hottest day or biggest swing in prices. :param dso: the DSO that the data should be plotted for (e.g. ‘1’) :type
dso: str :param base_case: folder extension of case of interest :type base_case: str :param day_range: range of
days to be summed (for example a month) :type day_range: list :param agent_prefix: folder extension for agent
data :type agent_prefix: str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str

Returns
dataframe with values for each day dictionary of worst values. saves values to file

tesp_support.dsot.plots.generation_load_profiles(dir_path, metadata_path, data_path, day_range,

use_ercot_fuel_mix_data=False, comp=None)

For a specified day range this function plots the stacked profiles of all generators (by fuel type) along with load
plots. :param dir_path: path locating the AMES data file :type dir_path: str :param metadata_path: path locating
the ERCOT load profile 5 minute data :type metadata_path: str :param data_path: path to the folder containing
the plots sub folder :type data_path: str :param day_range: range of starting day and ending day of plot :type
day_range: range :param use_ercot_fuel_mix_data: If True plots 2016 actual ERCOT data, if False plots AMES
RT data. :type use_ercot_fuel_mix_data: bool :param comp: folder path containing the generation data for the
comparison case. Set to None for no comparison :type comp: str

Returns
saves plots to file

tesp_support.dsot.plots.generation_statistics(dir_path, config_dir, config_file, day_range,

use_gen_data=True)

For a specified day range this function plots the stacked profiles of all generators (by fuel type) along with load
plots. :param dir_path: path locating the AMES data file :type dir_path: str :param config_dir: path locating the
case config file :type config_dir: str :param config_file: name of the case config file :type config_file: str :param
day_range: range of starting day and ending day of plot :type day_range: range :param use_gen_data: if True
uses dispatched generator performance from PyPower. If False uses dispatched :type use_gen_data: bool :param
AMES performance:

Returns
saves plots to file

268

Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.plots.get_date(dir_path, dso, day)

Utility to return start time (datetime format) of simulation day (str) in question

tesp_support.dsot.plots.get_day_df (dso, system, subsystem, variable, day, case, agent_prefix, gld_prefix)

This utility loads and returns a dataframe for the desired variable for the day and dso in question. :param dso:
the DSO that the data should be plotted for (e.g. ‘1’) :type dso: str :param system: the system to be plotted (e.g.
‘substation’, ‘house’, ‘HVAC_agent’) :type system: str :param subsystem: the individual house to be plotted (e.g.
‘HousesA_hse_1") or the operator to be used if :type subsystem: str :param aggregating many houses: :type
aggregating many houses: e.g. ‘sum, ‘mean’ :param variable: variable to be plotted from system dataframe (e.g.
‘cooling_setpoint’ or ‘real_power_avg’) :type variable: str :param day: the day to plotted. :type day: str :param
case: folder extension of case of interest :type case: str :param agent_prefix: folder extension for agent data :type
agent_prefix: str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str

Returns
reduced dataframe

Return type
df (dataframe)

tesp_support.dsot.plots.get_house_schedules (agent_metadata, gld_metadata, house_name)

Utility to get schedules directly from the agent dictionary. This allows evaluation of schedules prior to agent
control. :param agent_metadata: dictionary of agent metadata :type agent_metadata: dict :param gld_metadata:
dictionary of gld metadata :type gld_metadata: dict :param house_name: name of GLD house object schedules
are wanted for :type house_name: str

Returns
dictionary of schedules in list form

Return type
schedules (dict)

tesp_support.dsot.plots.heatmap_plots(dso, system, subsystem, variable, day_range, case, agent_prefix,
gld_prefix)

For a specified day, system, variable, and day_range this function will load in the required data, manipulate
the dataframe into the required shape, plot the heatmap and save the heatmap to file. :param dso: the DSO
that the data should be plotted for (e.g. ‘1) :type dso: str :param system: the system to be plotted (e.g. ‘sub-
station’, ‘house’, ‘HVAC_agent’) :type system: str :param subsystem: the individual house to be plotted (e.g.
‘HousesA_hse_1") or the operator to be used if :type subsystem: str :param aggregating many houses: :type
aggregating many houses: e.g. ‘sum, ‘mean’ :param variable: variable to be plotted from system dataframe (e.g.
‘cooling_setpoint’ or ‘real_power_avg’) :type variable: str :param day_range: range of the day indexes to be
plotted. Day 1 has an index of O :type day_range: range :param case: folder extension of case of interest :type
case: str :param agent_prefix: folder extension for agent data :type agent_prefix: str :param gld_prefix: folder
extension for GridLAB-D data :type gld_prefix: str

Returns
saves heatmap to file
tesp_support.dsot.plots.house_check(dso_range, sourceCase, targetCase, houseProperties)
Main function of the module.
Parameters

argv — Command line arguments given as: -d <Substation/DSO number to be analyzed> -s
<source case folder name> -t <target case folder name> -p <property to compare by plots>

Return type
None

tesp_support.dsot.plots.limit_check(log_list, dso_num, system, variable, day_range, base_case,
agent_prefix, GLD_prefix, max_lim, min_lim)

5.3. tesp_support package 269

TESP Documentation, Release 1.0

For a specified dso, system, variable, and day_range this function will the time and place of the value that most
exceeds upper and lower limits. A text description will be added to a log list and returned. :param log_list: list
of limit excursions that will be added to. :type log_list: list :param dso_num: the DSO that the data should be
plotted for (e.g. ‘1’) :type dso_num: str :param system: the system to be checked (e.g. ‘substation’, ‘house’,
‘HVAC_agent’) :type system: str :param variable: variable to be checked from system dataframe (e.g. ‘cool-
ing_setpoint’ or ‘real_power_avg’) :type variable: str :param day_range: range of the day indexes to be checked.
Day 1 has an index of O :type day_range: range :param base_case: folder extension of case of interest :type
base_case: str :param agent_prefix: folder extension for agent data :type agent_prefix: str :param GLD_prefix:
folder extension for GridLAB-D data :type GLD_prefix: str :param max_lim: upper value that variable should
not exceed during simulation :type max_lim: float :param min_lim: lower value that variable should not exceed
during simulation :type min_lim: float

Returns
saves heatmap to file

tesp_support.dsot.plots.load_agent_data(dir_path, folder_prefix, dso_num, day_num, agent_name)
Utility to open hS files for agent data.

Parameters
e dir_path (str) — path of parent directory where DSO folders live
» folder_prefix (str) — prefix of DSO folder name (e.g. ‘/TE_base_s’)
* dso_num (str) — number of the DSO folder to be opened
* day_num (str) — simulation day number (1 = first day of simulation)

* agent_name (str)— name of agent data to load (e.g. ‘house’, ‘substation’, ‘inverter’, ‘retail
site’ etc)
Returns
dataframe of system metadata agent_df: dataframe of agent timeseries data

Return type
agent_meta_df
tesp_support.dsot.plots.load_ames_data(dir_path, day_range)
Utility to open AMES csv file.

Parameters
» dir_path (str) — path of directory where AMES data lives
» day_range (range) — range of simulation days for data to be returned

Returns
dataframe of AMES data

Return type
data_df

tesp_support.dsot.plots.load_da_retail_price(dir_path, folder_prefix, dso_num, day_num, retail=True)

Utility to return day ahead cleared retail price. Data corresponds to 10am bid day before mapped to actual
datetime when the energy will be consumed. :param dir_path: path of parent directory where DSO folders live
:type dir_path: str :param folder_prefix: prefix of DSO folder name (e.g. ‘/TE_base_s’) :type folder_prefix: str
:param dso_num: number of the DSO folder to be opened :type dso_num: str :param day_num: simulation day
number (1 = first day of simulation) :type day_num: str

Returns
dataframe of cleared DA retail price

270 Chapter 5. References

TESP Documentation, Release 1.0

Return type
retail_da_data_df

tesp_support.dsot.plots.load_duration_plot(dso, system, subsystem, variable, day, case, comp,
agent_prefix, gld_prefix)
For a specified dso, system, variable, and day this function will load in the required data, plot the load duration
profile and save the plot to file. NOTE: currently for one day = should extend to a day-range. :param dso: the
DSO that the data should be plotted for (e.g. ‘1’) :type dso: str :param system: the system to be plotted (e.g.
‘substation’, ‘house’, ‘HVAC_agent’) :type system: str :param subsystem: the individual house to be plotted (e.g.
‘HousesA_hse_1") or the operator to be used if :type subsystem: str :param aggregating many houses: :type
aggregating many houses: e.g. ‘sum, ‘mean’ :param variable: variable to be plotted from system dataframe (e.g.
‘cooling_setpoint’ or ‘real_power_avg’) :type variable: str :param day: the day to plotted. :type day: str :param
case: folder extension of case of interest :type case: str :param comp: folder extension of a comparison case of
interest. Optional - set to None to show just one case. :type comp: str :param agent_prefix: folder extension for
agent data :type agent_prefix: str :param gld_prefix: folder extension for GridLAB-D data :type gld_prefix: str

Returns
saves load duration plot to file

tesp_support.dsot.plots.load_ercot_data(metadata_file, sim_start, day_range)

Utility to open ercot csv file.
Parameters
» metadata_file (str) — path of where the metadata_file lives
e sim_start (datetime) — start time of the simulation (from generate_case_config.json)
» day_range (range) — range of simulation days for data to be returned

Returns
dataframe of ERCOT 2016 fuel mix data

Return type
data_df

tesp_support.dsot.plots.load_ercot_fuel_mix (metadata_path, dir_path, day_range)
Utility to open AMES csv file.

Parameters
» metadata_path (str) — path of directory where ERCOT Fuel mix data lives
e dir_path (str) — path of directory where AMES data lives
» day_range (range) — range of simulation days for data to be returned

Returns
dataframe of AMES data

Return type
data_df

tesp_support.dsot.plots.load_gen_data(dir_path, gen_name, day_range)
Utility to open hS files for generator data.

Parameters
e dir_path (str) — path of parent directory where DSO folders live
* gen_name (str) — name of generator (e.g. **)

» day_range (range) — range of days to be summed (for example a month)

5.3. tesp_support package 271

TESP Documentation, Release 1.0

Returns
dataframe of system metadata

Return type
gen_data_df (dataframe)

tesp_support.dsot.plots.load_indust_data(indust_file, day_range)
Utility to open industrial load csv file.
Parameters
e indust_file (str) — path and filename where the industrial csv load lives
» day_range (range) — range of simulation days for data to be returned

Returns
dataframe of industrial loads per DSO bus

Return type
data_df
tesp_support.dsot.plots.load_json(dir_path, file_name)
Utility to open Json files.

tesp_support.dsot.plots.load_retail_data(dir_path, folder_prefix, dso_num, day_num, agent_name)

Utility to open hS5 files for agent data. :param dir_path: path of parent directory where DSO folders live :type
dir_path: str :param folder_prefix: prefix of DSO folder name (e.g. ‘/TE_base_s’) :type folder_prefix: str :param
dso_num: number of the DSO folder to be opened :type dso_num: str :param day_num: simulation day number
(1 = first day of simulation) :type day_num: str :param agent_name: name of agent data to load (e.g. ‘house’,
‘substation’, ‘inverter’ etc) :type agent_name: str

Returns
dataframe of system metadata agent_df: dataframe of agent timeseries data

Return type
agent_meta_df

tesp_support.dsot.plots.load_system_data(dir_path, folder_prefix, dso_num, day_num, system_name)

Utility to open GLD created hS5 files for systems’ data. :param dir_path: path of parent directory where DSO
folders live :type dir_path: str :param folder_prefix: prefix of DSO folder name (e.g. ‘/TE_base_s’) :type
folder_prefix: str :param dso_num: number of the DSO folder to be opened :type dso_num: str :param day_num:
simulation day number (1 = first day of simulation) :type day_num: str :param system_name: name of system
data to load (e.g. ‘house’, ‘substation’, ‘inverter’ etc) :type system_name: str

Returns
dataframe of system metadata system_df: dataframe of system timeseries data

Return type
system_meta_df

tesp_support.dsot.plots.load_weather_data (dir_path, folder_prefix, dso_num, day_num)
Utility to open weather dat files and find day of data

Parameters
e dir_path (str) — path of parent directory where DSO folders live
» folder_prefix (str) — prefix of DSO folder name (e.g. /DSO_)
* dso_num (str) — number of the DSO folder to be opened

e day_num (str) — simulation day number (1 = first day of simulation)

272 Chapter 5. References

TESP Documentation, Release 1.0

Returns
dataframe of weather data for simulation day requested

Return type
weather_df

tesp_support.dsot.plots.metadata_dist_plots(system, sys_class, variable, dso_range, case, data_path,
metadata_path, agent_prefix)

For system, class, and dso_range this function will load in the required data, and plot a histogram of the population
distribution. :param system: the system to be plotted (e.g. ‘house’) :type system: str :param sys_class: the
subclass to be plotted (e.g. ‘SINGLE_FAMILY"). If system has no subsystems or you want to :type sys_class:
str :param see the full population set equal to None: :param variable: variable to be plotted from system dataframe
(e.g. ‘sqft’) :type variable: str :param dso_range: range of the DSOs to be plotted. DSO 1 has an index of 0
‘type dso_range: list :param case: folder extension of case of interest :type case: str :param data_path: :type
data_path: str :param metadata_path: :type metadata_path: str :param agent_prefix: folder extension for agent
data :type agent_prefix: str

Returns
saves plot of population distribution to file

tesp_support.dsot.plots.plot_lmp_stats(data_path, output_path, dso_num, month_index=38)

Will plot LMPS by month, duration, and versus netloads loads (for select month), and save to file. :param
data_path: location of the data files to be used. :type data_path: str :param output_path: path of the location
where output (plots, csv) should be saved :type output_path: str :param dso_num: bus number for LMP data to
be plotted :type dso_num: str

Returns
saves dso Imps plots to file

tesp_support.dsot.plots.run_plots()
tesp_support.dsot.plots.tic()
tesp_support.dsot.plots.toc(tempBool=True)

tesp_support.dsot.plots.transmission_statistics (metadata_file_path, case_config_path, data_path,
day_range, sim_results=False)

For a specified day range this function determines key transmission statistics (e.g. line lenght, max normalized
line usage etc).

Parameters
» metadata_file_path (str) — path and file name of the 8/200-bus metadata json file

» case_config_path (str) — path and file name locating the system case config json file

data_path (str) — path to the folder containing the simulation results
» day_range (range) — range of starting day and ending day of data to include
* sim_results (bool) — if True loads in simuation results. If false skips simulation results.

Returns
saves csv statistics to files

tesp_support.dsot.plots.wind_diff(x)

5.3. tesp_support package 273

TESP Documentation, Release 1.0

tesp_support.dsot.pv_agent module

Class that controls the Photovoltaic Solar agents for now, it only provides day ahead forecast for each agent. It does not
participate in bidding

class tesp_support.dsot.pv_agent.PVDSOT (pv_dict, inv_properties, key, model_diag_level, sim_time)
Bases: object
This agent manages the PV solar
Parameters
» pv_dict (diction) — dictionary to populate attributes
e inv_properties (diction)
* key (str) — name of this agent
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable
Initialize from Args

name

name of this agent

Type

str
participating
participating from pv_dict dictionary

Type
bool

rating
rating from pv_dict dictionary

Type

float
scaling_factor
scaling_factor from pv_dict dictionary

Type
float

slider
slider_setting from pv_dict dictionary

Type

float
windowLength

48 always for now

Type

int

274 Chapter 5. References

TESP Documentation, Release 1.0

TIME
range(0, self.windowLength)

Type

list
scale_pv_forecast (solar_f)

tesp_support.dsot.pv_agent.test()
Makes a single pv agent and run DA

tesp_support.dsot.residential_feeder_glm module
tesp_support.dsot.retail_market module

Class that manages the operation of retail market at substation-level

Functionalities include: collecting curve bids from DER and DSO agents; generating aggregated buyer and seller
curves; market clearing for both RT and DA retail markets; deciding cleared quantity for individual DERs.

The function call order for this agent is:
initialize(retail_dict)

Repeats at every hour:
clean_bids_DA() curve_aggregator_DA (identity, bid, id) ... curve_aggregator_DA(identity, bid, id)
clear_market_DA(transformer_degradation, Q_max)

Repeats at every 5 min:
clean_bids_RT() curve_aggregator_RT(identity, bid, id) ... curve_aggregator_RT(identity, bid,
id) clear_market_RT(transformer_degradation, Q_max)

class tesp_support.dsot.retail_market.RetailMarket (retail_dict, key)
Bases: object

This agent manages the retail market operating
Parameters
» retail_dict
e key
name

name of the retail market agent

Type
str

price_cap
the maximum price that is allowed in the market, in $/kWh

Type

float
num_samples

the number of sampling points, describes how precisely the curve is sampled

Type

int

5.3. tesp_support package 275

TESP Documentation, Release 1.0

windowLength

length of the planning horizon for the DA market, in hours

Type
int
Q_max
capacity of the substation, in kWh
Type
float
maxPulLoading

rate of the maxPuLoading for transformer

Type
float

curve_buyer_RT
aggregated buyer curve, updated after receiving each RT buyer bid
Type
Curve
curve_seller_RT
aggregated seller curve, updated after receiving each RT seller bid

Type

Curve
curve_buyer_DA
48 aggregated buyer curves, updated after receiving each DA buyer bid

Type
dict of curves

curve_seller_DA
48 aggregated seller curves, updated after receiving each DA seller bid

Type

dict of curves
clear_type_RT
O=uncongested, 1=congested, 2=inefficient, 3=failure

Type
int

clear_type_DA
list of clear type at each hour
Type
list
cleared_price_RT
cleared price for the substation for the next 5-min

Type
float

276 Chapter 5. References

TESP Documentation, Release 1.0

cleared_price_DA
list of cleared price at each hour
Type
list
cleared_quantity_RT
cleared quantity for the substation for the next 5-min

Type
float

cleared_quantity_DA

list of cleared quantity at each hour

Type

list
site unresponsive DA
Site Day Ahead quantity which is unresponsive
Type
list
AMES_RT

Smooth Quadratics

Type
list X 5

AMES_DA
X windowLength): Smooth Quadratics

Type
(list X 5

basecase
If true no agent market, false agent market

Type
bool

load_flexibility
If true load is bid in to the market, false all load is unresponsive

Type
bool

U_price_cap_CA

Upper price range for curve aggregator (CA)

Type
float

L_price_cap_CA

Lower price range for curve aggregator (CA)

Type

float

5.3. tesp_support package 277

TESP Documentation, Release 1.0

TOC_dict

parameters related to transformer lifetime cost calculation, including OperatingPeriod (int): operating
period, in minute timeStep (int): timestep, in minute Tamb (float): ambient temperature, in deg C
delta_T_TO_init (int): initial delta temperature of top oil, in deg C delta_T_W_init (int): initial delta
temperature of winding, in deg C BP (float): initial cost of transformer, in $ toc_A (float): cost per watt for
no-load losses, in $/W toc_B (float): cost per watt for load losses, in $/W Base_Year (float): expected lifes-
pan of transformer, in year P_Rated (float): capacity, in W NLL_rate (float): no load loss rate, in % LL_rate
(float): load loss rate, in % Sec_V (float): secondary voltage level, in volt TOU_TOR (float): oil time con-
stant, in minute TOU_GR (float): winding time constant, in minute Oil_n (float): Oil exponent n Wind_m
(float): Winding exponent m delta_T_TOR (float): top oil temperature rise, in deg C delta_T_ave_wind_R
(float): average winding temperature rise over ambient temperature, in deg C

Type
dict

clean_bids_DAQ)

Initialize the day-ahead market

clean_bids_RT()

Initialize the real-time market

clear_market (curve_buyer, curve_seller, transformer_degradation, Q_max)

Shared function called by both clear_market_RT and clear_market_DA functions to find the intersection
between supply curve and demand curve

Parameters
* curve_buyer (Curve) — aggregated buyer curve
e curve_seller (Curve) — aggregated seller curve

* transformer_degradation (bool) — equals to 1 if transformer_degradation is consid-
ered in the supply curve

* Q_max (float) — substation capacity, in kWh

Outputs:
clear_type (int) cleared_price (float) cleared_quantity (float) congestion_surcharge (float)

clear_market_DA (transformer_degradation, Q_max)

Function used for clearing the DA market

Three steps of work are fullfilled in a loop in this function: First the buyer curve at each hour is fitted
polynomial; Second clear_market function is called for calculating the cleared price and cleared quantity for
the whole market at each hour; Third distribute_cleared_quantity function is called for finding the cleared
price and cleared quantity for the individual DERs at each hour.

buyer_info_DA and seller_info_DA, clear_type_DA, cleared_price_DA and cleared_quantity_DA are up-
dated with cleared results

clear_market_RT (transformer_degradation, Q_max)

Function used for clearing the RT market

Three steps of work are fullfilled in this function: First the buyer curve is fitted polynomial; Second
clear_market function is called for calculating the cleared price and cleared quantity for the whole mar-
ket; Third distribute_cleared_quantity function is called for finding the cleared price and cleared quantity
for the individual DERs.

buyer_info_RT and seller_info_RT, clear_type_RT, cleared_price_RT and cleared_quantity_RT are up-
dated with cleared results

278

Chapter 5. References

TESP Documentation, Release 1.0

convert_2_AMES_quadratic_BID(curve, Q_cleared, price_forecast, c_type)
Convert aggregated DSO type bid to AMES quadratic curve

Parameters
e curve (Curve) — substation demand curve to be preprocessed
» price_forecast — locally forecast price at the substation level
¢ Q_cleared - locally cleared quantity at the substation
e c_type (str)— ‘DA’ for day-ahead and ‘RT’ for real-time
Returns

f(Q)=resp_c2*Q"2+C1*Q+C0
unresp_mw (float): minimum demand MW resp_max_mw (float): maximum demand MW
resp_c2 (float): quadratic coefficient resp_c1 (float): linear coefficient resp_cO (float): con-
stant coefficient resp_deg (int): equal to “2” to represent the current order in the list

Return type
quadratic_bid (list)

curve_aggregator_AMES_DA (demand_curve_DA, Q_max, Q_cleared, price_forecast)
Function used to aggregate the substation-level DA demand curves into a DSO-level DA demand curve

Parameters
¢ demand_curve_DA (dict)—a collection of demand curves to be aggregated for day-ahead
* Q_max (float) — maximum capacity of the substation, in kW
* Q_cleared (float) — locally cleared quantity of the substation in kW
e price_forecast (float) — locally forecast price at the substation level

curve_aggregator_AMES_RT (demand_curve_RT, Q_max, Q_cleared, price_forecast)
Function used to aggregate the substation-level RT demand curves into a DSO-level RT demand curve

Parameters
¢ demand_curve_RT (Curve) — demand curve to be aggregated for real-time
* Q_max (float)— maximum capacity of the substation, in kW
¢ Q_cleared (float) — locally cleared quantity of the substation in kW
» price_forecast (float) — locally forecast price at the substation level

curve_aggregator_DA (identity, bid_DA, name)
Function used to collect the DA bid and update the accumulated buyer or seller curve
Parameters
¢ identity (str) — identifies whether the bid is collected from a “Buyer” or “Seller”

e bid_DA (1ist) — a nested list with dimension (self.windowLength, m, 2), with m equals 2
to4

* name (str)— name of the buyer or seller

curve_aggregator_RT (identity, bid_RT, name)
Function used to collect the RT bid and update the accumulated buyer or seller curve

Parameters

¢ identity (str) — identifies whether the bid is collected from a “Buyer” or “Seller”

5.3. tesp_support package 279

TESP Documentation, Release 1.0

e bid_RT (list) — a nested list with dimension (m, 2), with m equals 2 to 4
* name (str) — name of the buyer or seller

curve_preprocess (substation_demand_curve, Q_max)
An internal shared function called by curve_aggregator_DSO_RT and curve_aggregator_DSO_DA
functions to truncate

the substation demand curve before aggregation as well as convert the retail prices into wholesale
prices

Parameters

¢ substation_demand_curve (Curve) — substation demand curve to be preprocessed
e Q_max (float) — maximum capacity of the substation, in kW

Returns
preprocessed demand curve

Return type
preprocessed_curve (curve)

process_site_da_quantities(forecast_load, name, status)

Function stores the day-ahead quantities, primarily for HVAC at the moment, it utilizes

arguments in: unresponsive loads (1x 48) dataframe responsive loads (1x48) dataframe name: of the house

(str) returns self.site_quantity_DA (dict, ‘name’, ‘ status (participating or not participating’, ‘Quantity (1 x
48))

retail_rate_inverse(Pr)
Function used to convert the retail prices into wholesale prices

Parameters
Pr (float) — retail price, in $/kWh

Returns
wholesale price, in $/kWh

Return type
Pw (float)

test_function()

Test function with the only purpose of returning the name of the object
update_price_CA(price_forecast)

Updates the price_CA

tesp_support.dsot.retail_market.test()
Testing AMES

280 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.dsot.sankey module

tesp_support.dsot.sankey.label_nodes (data, total_value)

Adds max quantity of node value to node label

tesp_support.dsot.sankey.load_CFS_data(results_path, dso_range, update_data, scale, labelvals)

Initiates and updates Sankey diagram data structure for Cash Flow Sheet data. :param results_path: directory
path for the case to be analyzed. Should be run after annual post-processing :type results_path: str :param
dso_range: range of DSOs to be included in data analysis :type dso_range: range :param update_data: If True
pulls in analysis data. If False plots Sankey with default data to show structure :type update_data: bool :param
scale: If True scales data to $B from standard $K CFS units :type scale: bool :param labelvals: If True adds
quantitative values to node labels :type labelvals: bool

Returns
Sankey data structure for Plotly Sankey diagram plotting

Return type
data (dict)

tesp_support.dsot.sankey.load_CFS_delta_data(results_path, comp_path, dso_range, update_data, scale,
labelvals, metadata_file)

Initiates and updates Sankey diagram data structure for Cash Flow Sheet data. :param results_path: directory path
for the case to be analyzed. Should be run after annual post-processing :type results_path: str :param comp_path:
directory path for the baseline (business-as-usual) case. :type comp_path: str :param dso_range: range of DSOs
to be included in data analysis :type dso_range: range :param update_data: If True pulls in analysis data. If False
plots Sankey with default data to show structure :type update_data: bool :param scale: If True scales data to $B
from standard $K CFS units :type scale: bool :param labelvals: If True adds quantitative values to node labels
:type labelvals: bool :param metadata_file:

Returns
Sankey data structure for Plotly Sankey diagram plotting

Return type
data (dict)
tesp_support.dsot.sankey.load_energy_data(results_path, dso_range, update_data, scale, labelvals)

Initiates and updates Sankey diagram data structure for simulation energy data. :param results_path: directory
path for the case to be analyzed. Should be run after annual post-processing :type results_path: str :param
dso_range: range of DSOs to be included in data analysis :type dso_range: range :param update_data: If True
pulls in analysis data. If False plots Sankey with default data to show structure :type update_data: bool :param
scale: If True scales data to GW from standard MW CFS units :type scale: bool :param labelvals: If True adds
quantitative values to node labels :type labelvals: bool

Returns
Sankey data structure for Plotly Sankey diagram plotting

Return type
data (dict)

tesp_support.dsot.sankey.rec_diff(dl, d2)

tesp_support.dsot.sankey.sankey_plot()

5.3. tesp_support package 281

TESP Documentation, Release 1.0

tesp_support.dsot.solar module

This script provides a few essential functions:

* Download hourly annual solar data for a specified list of locations from the National Solar Radiation Database
(NSRDB).

» Simulate the power production for a standard size solar array for each of the solar profiles downloaded using
NREL’s PySAM (Python wrapper for their SAM tool).

* Aggregate the individual solar profiles to form standardized distributed solar power profiles and centralized
utility-scale profiles for the DSO+T 200-node model and 8-node model.

The script includes various housekeeping functions such as file management, automatic generation of distributed solar
sites around the primary DSO location, and formatting of the necessary files for ingest by their target simulators.

This script is structured like virtually all of my scripts are structured: running this script with no arguments will perform
a comprehensive standard analysis using reasonable default inputs. All necessary inputs and requested outputs will be
produced in the “auto-run” folder as a sort of combination example and test case.

Its worth noting that as of this writing, the NSRDB is VERY slow to respond by the provided API and the daily limit of
files requests is relatively modest. To gather all the data to run ten distributed solar sites per DSO (200-node) required
literally a day.

Also note that use of this API requires registration and use of an NREL- provided API key. This file has my API key
removed so that I don’t inadvertently share its use with all of PNNL. Get your own key.

DSO+T is simulating 2016 which includes a Leap Day. The NSRDB data does not include data for this day (which is
odd, given that the data is based on satellite photos; the source data should exist). I’'m replicating data from Feb 28th
as the data for Feb. 29th, but I'm only doing this when creating the output files. All the original NRSDB and SAM
power profiles only contains 365 days of data.

tesp_support.dsot.solar.add_locations (dso_meta, solar_meta, nsrdb_path)

This function adds a number of random locations (specified in solar_meta) withing a certain distance (specified
in solar_meta) of a DSO to replicate the effects of the distributed solar generation. Also randomizes the tilt and
azimuth orientation of the panels for each distributed location.

The primary location for the DSO is the lat/long from the DSO metadata file and is also added to the solar site
list. This is the location that will be used for any utility-scale solar generation.

Parameters
e dso_meta (1ist) — List of dicts with metadata associated with each DSO
» solar_meta (dict) — Metadata related to the solar parameters
* nsrdb_path (str) — Path to the directory with the NSRDB data

Returns
One dictionary per DSO with appropriate metadata captured. Each dictionary has an added item,
“distributed locations” which is a dict of parameters for the distributed solar generation

Return type
dso_meta (list of dicts)

tesp_support.dsot.solar.aggregate_scale_solar_pv_profiles(dso_meta, solar_meta, output_path)

This function calculates the utility-scale and distributed solar PV power profiles. The utility scale profile is from
a single location (the primary DSO location) while the distributed profile is an equally-weighted average of all
profiles for the DSO.

Both the utility-scale and distributed power profiles are scaled to meet both the total solar capacity contribution
of the DSO and their relative ratios between utility-scale and dsitributed.

282 Chapter 5. References

TESP Documentation, Release 1.0

Parameters
* dso_meta (1ist) — List of dicts with metadata associated with each DSO, pecifically with
the load fraction needed to scale the solar PV power profiles as well as the profiles themselves

* solar_meta (dict) — User-specified solar metadata

» output_path (str) — Path to the solar PV power profiles for all DSOs.
Returns
List of dicts with metadata associated with each DSO, updated to include the scaled and aggre-
gated utility-scale and dsitributed solar profiles.

Return type
dso_meta (list)

tesp_support.dsot.solar.aggregate_to_8_nodes (dso_meta, output_path)
This function aggregates the individual profiles for each of the 200 nodes into a single profile for each of the
reduced 8 nodes in the smaller model. This is done for both the utility and the distributed solar profiles.
The 8-node DSOs are added to the dso_meta object to the end of the list. They don’t have all the same metadata
as the original 200-node DSOs.

Parameters
* dso_meta (1ist)— List of dicts with metadata associated with each DSO, specifically 200-
node DSO solar profiles

* output_path (str) — Location to write out aggregated solar
e data. (profile)

Returns
List of dicts with metadata associated with each DSO, updated to include aggregated solar profile

data and output file location.
Return type
dso_meta (list)
tesp_support.dsot.solar.build_dso_solar_folders(dso_meta, output_path)
Creates folders for the solar data in the output path. Folders are only created if they don’t already exist.

Parameters
» dso_meta — metadata dictionary containing the DSO name

» output_path — string specifying output path of data

tesp_support.dsot.solar.calc_dso_solar_fraction(dso_meta)
This function calculates the total target PV fraction in proportion with the total average load of the system. That
is, it answers the question, “What fraction of the total installed PV should be allocated to each DSO?”” (The total

size of the installed PV for all of ERCOT is pre-defined by another analysis.)
Parameters
dso_meta (1ist) — List of dicts with metadata associated with each DSO, specifically the aver-
age annual load of each DSO

Returns
List of dicts with metadata associated with each DSO, updated to include load fractions for each

DSO.

Return type
dso_meta (list)

5.3. tesp_support package 283

TESP Documentation, Release 1.0

tesp_support.dsot.solar.calc_solarPV_power (dso_meta, output_path)

This function uses PySAM from NREL (https://sam.nrel.gov/software-development-kit-sdk/pysam.html) to cal-
culate the solar PV power generation for a solar array at the indicated site. Metadata associated with each site
determines the tilt and azimuth. All other array modeling parameters (largely losses) are constant across all sites.
The array size is also fixed ata 1 MW.

Parameters

» dso_meta (1ist) — List of dicts with metadata associated with each DSO, specifically the
solar PV information per site

* output_path (str) — Location to write out solar PV power data

Returns
List of dicts with metadata associated with each DSO, updated to include power profiles for each
site in the DSO.

Return type
dso_meta (list)
tesp_support.dsot.solar.create_GLD_files(dso_meta)
This function creates 5-minute power profiles from hourly profiles through the power of linear interpolation
technology (TM). These profiles are formatted as GridLAB-D tape players.

Example: 2008-12-25 00:00:00,622368.3864 2008-12-25 00:05:00,738071.2498 2008-12-25
00:10:00,680611.3676 2008-12-25 00:15:00,696280.9035

It only acts on the distributed power profiles since these are the ones that are needed by the distribution system
simulator to be used to implement distributed (rooftop) generation in the DSO.

Parameters
dso_meta (1ist) — List of dicts with metadata associated with each DSO including the current
distributed power profiles.

Returns
List of dicts with DSO data including the location of the interpolated values. Decided not to save
these inside the dictionary themselves due to their size and the fact that I don’t anticipate needing
to reuse them.

Return type
dso-Meta (list)

tesp_support.dsot.solar.create_dsot_utility_solar_file(dso_meta, output_path)

This function creates a time-series “tape” file for ingest by the DSO+T co-simulation for each of the 200 utility-
scale solar PV generation sites. The format is specific to this study (though not opaque in the least); a sample is
shown below taken from the wind profile:

time,wind26,wind28,wind29,. .. 2015-12-29 00:00:00,238.100,646.600,365.400.. .. 2015-12-29
01:00:00,231.497,646.600,365.400,... ...

The data needed for these profiles starts prior to Jan 1 to allow the models to warm up. The data prior to Jan 1 is
not crucial, and I'll just the Jan 1 data for those early days as a good-enough approximation.

Also creates an interpolated 5-min version of the file for the RT market.
Parameters

* dso_meta (Iist) — List of dicts with metadata associated with each DSO including the
utility-scale solar PV power profiles.

* output_path (str) — Path to directory where file will be written

284 Chapter 5. References

https://sam.nrel.gov/software-development-kit-sdk/pysam.html

TESP Documentation, Release 1.0

tesp_support.dsot.solar.create_graphs(dso_meta, type)
This function graphs four weeks out of the year for each DSO to enable easy comparison between the effects of
the distributed and utility (single-point) solar power profiles.
Graph image files are saved alongside solar profile files.

Parameters
» dso_meta (1ist) — List of dicts with metadata associated with each DSO, specifically the
distributed and utility scale solar power profiles.

* type (str) — Keyword indicating the type of graph to create

tesp_support.dsot.solar.create_hourly_solar_forecast (dso_meta, dso_type, rng_seed)
This function creates an hourly forecast for the utility profile by adding noise from a random distribution to it.
The parameters for said distribution come from literature (https://www.nrel.gov/docs/fy150sti/63876.pdf).

In a clumsy way that I’'m not proud of now that I’'m documenting the function, the user decides whether to add
noise to the 8-node DSOs or the 200-node DSOs by defining a value for the “dso_type” parameter.

Parameters
* dso_meta (I1ist) — List of dicts with metadata associated with each DSO including the
current utility dso power profiles.

» dso_type (int) - Used to indicate whether to create forecast files for the 8-node or 200-node
utility power profiles. Valid values are “8” or “200”.

Returns
List of dicts with DSO data including the synthesized forecast profiles.

Return type
dso-Meta (list)
tesp_support.dsot.solar.download_nsrdb_data(dso_meta, solar_meta, output_path)
This function queries the NSRDB database over the web and pulls down the solar data down and stores it in a
Pandas dataframe.

Parameters

» dso_meta (1ist) — List of dicts with metadata associated with each DSO, specifically the
site information

* solar_meta (1ist) — List of metadata related to the solar parameters

e output_path (str) — Location to write out solar data from the NSRDB so that we don’t
have to re-query the database for data we already have.

Returns
List of dicts with metadata associated with each DSO, updated to include NSRDB-specific in-

formation such as the abreviated lats and longs from the downloaded solar data as well as a path
to each downloaded file and a boolean indicating a file has been downloaded for the given site.

Return type
dso_meta (list)
tesp_support.dsot.solar. forecast_cleanup (dso_meta, idx, error, profile, forecast_profile)

This function cleans up the forecast power profiles to eliminate negative forecast values and non-zero forecasts
when the actual values are zero (used as an indication that it is night). Not a great approximation but good

enough.
The 8-node DSOs are added to the dso_meta object to the end of the list. They don’t have all the same metadata
as the original 200-node DSOs.

5.3. tesp_support package 285

https://www.nrel.gov/docs/fy15osti/63876.pdf

TESP Documentation, Release 1.0

Parameters
* dso_meta (1ist) — List of dicts with metadata associated with each DSO
e idx (int) — Index for dso_meta to indicate which DSO needs to be cleaned up.
» error (list)— List of values containing the synthesized error signal

e forecast_profile (list) — List of values containing the forecast profile with forecast
errors added (sometimes causing problems that this function cleans up).

Returns
List of values containing the forecast profile after cleaning.

Return type
forecast_profile (list)

tesp_support.dsot.solar.generate_KML (dso_meta, output_file)
This function attempts to make a KML file that can be loaded into Google Earth to visualize the solar locations.

Parameters
e dso_meta (1ist) — List of dicts with metadata associated with each DSO
* output_file (str) — Location to write output KML

tesp_support.dsot.solar.generate_forecast_metrics(dso_meta, output_path)
Calculates the RMSE associated with each solar forecast file and write it out to file.

Parameters
¢ dso_meta
e output_path

Returns
(none)

tesp_support.dsot.solar.log_metdata(dso_meta)

tesp_support.dsot.solar.parse_DSO_metadata_Excel (dso_metadata_path, worksheet_name)

(DEPRECATED): Metadata is now stored in JSON file. See parse_DSO_metadata_Excel_JSON. This function
parses the DSO metadata which is contained in an Excel spreadsheet

Parameters
» dso_metadata_path (str) — Path to the Excel file containing the metadata to be parsed.
» worksheet_name (str) — Name of the worksheet in the Excel file containing the metadata

Returns
One dictionary per DSO with appropriate metadata captured.

Return type
dso_meta (list of dicts)

tesp_support.dsot.solar.parse_DSO_metadata_Excel_JSON(dso_metadata_path_Excel, worksheet_name,
dso_metadata_path_JSON)

This function parses the DSO metadata which is contained in a JSON and Excel files. Most of the metadata is in
the JSON but one crucial piece of information is in the Excel file: the mapping of the 200-node to 8-node buses.

Sample of the bus-generator file: (Note the first columns is empty) 200 bus 8bus 1 12131415161 ...

Sample of JSON structure: “general”: { ... } “DSO_1": { “bus_number”: 1, “latitude”: 33.02, “longitude”:
-96.85, “average_load_MW™: 4154.30537, ... },...

286 Chapter 5. References

TESP Documentation, Release 1.0

Parameters

* dso_metadata_path_Excel (str) — Path to the Excel file containing the metadata to be
parsed.

» worksheet_name (str)— Name of the worksheet in the Excel file containing the metadata.

» dso_metadata_path_JSON (str) — Path to the JSON file containing the metadata to be
parsed.

Returns
One dictionary per DSO with appropriate metadata captured.

Return type
dso_meta (list of dicts)

tesp_support.dsot.solar.parse_solar_metadata(solar_metadata_path)
This function parses the solar metadata JSON.

Parameters
solar_metadata_path (str) — Path to the JSON file containing the metadata to be parsed.

Returns
Dictionary form of the data in the JSON file

Return type
solar_dict (dicts)

tesp_support.dsot.solar.truncate(f, n=3)

This function truncates the passed in value to the specified number of decimals. The default value is three

decimals.
Parameters
o f (string/float) — Value to be truncated
* n (int) — Number of decimal places to truncate to
Returns

Truncated value of f

Return type
truc_val (string/float)

tesp_support.dsot.solar.write_power_profile (output_path, power_data)

This function writes out a power profile to the provided file. Only intended to write out a single value per line. 1
probably should have used the standard CSV library instead.

Parameters
» power_data (1ist) — List of power values

e output_path (str) — Path to the location of file to write.

5.3. tesp_support package 287

TESP Documentation, Release 1.0

tesp_support.dsot.substation module

Manages the Transactive Control scheme for DSO+T implementation version 1
Public Functions:

dso_loop
initializes and runs the agents

tesp_support.dsot.substation.dso_loop (metrics_root, with_market)

Wrapper for inner_substation_loop

When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

tesp_support.dsot.substation_f module

Manages the Transactive Control scheme for DSO+T implementation version 1
Public Functions:

dso_loop_f
initializes and runs the agents

tesp_support.dsot.substation_£f.dso_loop_f£ (configfile, metrics_root, with_market)

Wrapper for inner_substation_loop

When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

tesp_support.dsot.water_heater_agent module

Class that controls the Water Heater DER

Implements the optimum schedule of heating element operation given DA price forecast; generate the bids for DA
and RT; monitor and supervisory control of GridLAB-D environment element with the implementation of new SOHC
model and new delta_SOHC model

The function call order for this agent is:
* initialize

Repeats at every hour:
* DA_forecasted_price(forecasted_price)
¢ DA_forecasted_schedule(forecasted_schedule)
e formulate_bid_da()

Repeats at every S min:
¢ formulate_bid_rt()
* bid_accepted()

class tesp_support.dsot.water_heater_agent.WaterHeaterDSOT (wh_dict, wh_properties, key,
model_diag_level, sim_time, solver)

Bases: object
This agent manage the operation of water heater

Parameters

288 Chapter 5. References

TESP Documentation, Release 1.0

e wh_dict (dict)

» wh_properties (dict)

e key (str)

» model_diag_level (int) — Specific level for logging errors; set it to 11

e sim_time (str)— Current time in the simulation; should be human-readable
e solver (str)

volume

volume of the tank, in gal

Type
float

diameter

diameter of the tank layer, in ft

Type
float
Phw
rated power of the heating elements, in kW
Type
float
Tcold
temperature of the inlet cold water, in degF
Type
float
Tambient
ambient temperature, in degF
Type
float
Tdesired
setpoint value with highest user comfort, in degF
Type
float
Tmax
highest tolerant temperature of the water, in degF
Type
float
Tmin
lowest tolerant temperature of the water, in degF
Type
float

5.3.

tesp_support package

289

TESP Documentation, Release 1.0

windowLength
length of DA bidding timeframe

Type

int

weight_SOHC

weight of the upper temperature measure when estimating the SOHC, falls into range [0, 1]

Type
float

weight_comfort

weight of the user comfort in the DA quantity optimization objective, falls into range [0, 1]

Type

float

ProfitMargin_intercept

specified in % and used to modify slope of bid curve. Set to 0 to disable

Type
float

ProfitMargin_slope

specified in % to generate a small dead band (i.e., change in price does not affect quantity). Set to O to

disable
Type

float

Participating

equals to 1 when participate in the price-responsive biddings

Type
bool

price_cap

the maximum price that is allowed in the retail market, in $/kWh

Type

float
H_tank
height of the water tank, in ft

Type
float

A_tank

area of the layer of tank, in ft2

Type

float
A_wall

area of the water tank wall, in ft2

Type
float

290

Chapter 5. References

TESP Documentation, Release 1.0

R_tank
tank insulation, in ft2*hr*degF/Btu

Type

float

Cp
specific heat of water, in Btu/lbm*degF

Type
float

Rho
density of the water, in lbm/ft3

Type

float
BTUperkWh
unit conversion from kWh to BTU, in BTU/kWh

Type
float

GALperFt3

unit conversion from ft3 to gallon, in ga/ft3

Type

float
T_upper

current set point of the upper heating element, in degF

Type
float

T_bottom

current set point of the bottom heating element, in degF

Type

float
SOHC

statue of heat charge, in %

Type
float

SOHC_desired
desired SOHC, in %

Type
float

SOHC_max

maximum SOHC, in %

Type

float

5.3. tesp_support package 291

TESP Documentation, Release 1.0

SOHC_min

minimum SOHC, in %

Type

float

states_upper
list of states and time in 5-min of upper element
Type
list
states_bottom

list of states and time in 5-min of bottom element

Type

list
runtime_upper
runtime of the upper element during S-min

Type
float

runtime_bottom

runtime of the lower element during 5-min

Type

float
E_upper
energy consumed by the upper element in Smin, in kWh

Type
float

E_bottom

energy consumed by the bottom elemnt in 5min, in kWh

Type

float
wd_rate
averaged water draw flow rate in the Smin, in gal/min

Type
float

Setpoint_upper
setpoint to be set for the upper element, in degF

Type
float

Setpoint_bottom
setpoint to be set for the bottom element, in degF

Type

float

292 Chapter 5. References

TESP Documentation, Release 1.0

length_memory

length of memory for the historical data

Type
int
his_T_upper
historical time series data of the temperature measurement at the upper position
Type
list
his_T_bottom

historical time series data of the temperature measurement at the bottom position

Type

list
his_SOHC
historical time series data of the SOHC
Type
list
his_E_upper

historical time series power consumption of upper element

Type

list
his_E_bottom

historical time series power consumption of bottom element

Type
list
his_wd_rate

historical time series water draw flow rate data

Type

list
f_DA_price

forecasted DA price

Type
list
f_DA_schedule

forecasted DA water draw schedule

Type
list

index of price in the bid curve matrix

Type

int

5.3. tesp_support package 293

TESP Documentation, Release 1.0

index of quantity in the bid curve matrix
Type
int
DA_cleared_prices
list of 48-hours day-ahead cleared prices
Type
list
DA_cleared_quantities
list of 48-hours day-ahead cleared quantities
Type
list
RT_cleared_price
cleared price for the next Smin

Type
float

RT_cleared_quantity
cleared quantity for the next Smin

Type

float
hourto5min
conversion from hour to Smin, equals to 12

Type
int

hour
current hour
Type
int
minute
current minute

Type
int

co®_hour
intercept of the hourly delta SOHC model

Type
float

col_hour

coeflicient of the water draw flow rate in the hourly delta SOHC model

Type

float

294 Chapter 5. References

TESP Documentation, Release 1.0

co2_hour

coefficient of the upper element consumption in the hourly delta SOHC model

Type

float
co3_hour

coefficient of the bottom element consumption in the hourly delta SOHC model

Type
float

co0_5min
intercept of the Smin delta SOHC model

Type

float
col_5min

coeflicient of the water draw flow rate in the Smin delta SOHC model

Type
float

co2_5min

coefficient of the upper element consumption in the Smin delta SOHC model

Type

float
co3_5min

coeflicient of the bottom element consumption in the Smin delta SOHC model

Type
float

RT_SOHC_max

the maximum SOHC the water heater can achieve in the next Smin, in %

Type

float
RT_SOHC_min

the minimum SOHC the water heater can achieve in the next Smin, in %

Type
float

RT_Q_max
higher quantity boundary of the RT bid curve, in kWh

Type
float

RT_Q_min
lower quantity boundary of the RT bid curve, in kWh

Type

float

5.3. tesp_support package 295

TESP Documentation, Release 1.0

DA_optimal_quantities()

Generates Day Ahead optimized quantities for Water Heater according to the forecasted prices and water
draw schedule, called by DA_formulate_bid function

Returns
Optimized quantities for each hour in the DA bidding horizon, in kWh

Return type
Quantity (list) (1 x windowLength)

bid_accepted(model_diag_level, sim_time)
Update the thermostat setting if the last bid was accepted

The last bid is always “accepted”. If it wasn’t high enough, then the thermostat could be turned
up.
Parameters

» model_diag_level (int) — Specific level for logging errors; set it to 11

¢ sim_time (str) — Current time in the simulation; should be human-readable

Returns
True if the thermostat setting changes, False if not.

Return type
bool

con_rule_eql(m,t)
con_rule_inel(m, 1)

delta_SOHC_model_5min()

Function used to fit the Smin delta_SOHC estimation model, where Smin delta_SOHC is assumed to be a
function of wd_rate E_upper and E_bottom values with Smin interval

delta_SOHC_model_hour()

Function used to fit the hourly delta_SOHC estimation model, where hourly delta_SOHC is assumed to be
a function of wd_rate E_upper and E_bottom values with one-hour interval

estimate_wd_rate_5min()

Function used to estimate the water_draw flow rate in the previous 5 mins, called by update_WH_his every
5 mins

formulate_bid_da()
Formulate windowLength hours 4 points PQ bid curves for the DA market

Function calls DA_optimal_quantities to obtain the optimal quantities for the DA market. With the quanti-
ties, a 4 point bids are formulated for each hour.

Returns BID (float) (windowLength X 4 X 2): DA bids to be send to the retail DA market

formulate_bid_rt (model_diag_level, sim_time)
Formulate 4 points PQ bid curve for the RT market

Given the physical and operational constraints of the water heater and the current water heater status, 4
points RT bid curve is formulated for the next Smin.

Parameters

* model_diag_level (int) — Specific level for logging errors: set it to 11

296 Chapter 5. References

TESP Documentation, Release 1.0

e sim_time (str) — Current time in the simulation; should be human-readable

Returns
RT bid to be send to the retail RT market

Return type
BID (float) (4 X 2)

from_P_to_Q_WH(BID, PRICE)

Convert the 4 point bids to a quantity with the known price
Parameters
e BID (float) ((1,2)X4)-4 pointbid
* PRICE (float) — cleared price in $/kWh

Returns
quantity to be consumed in the next 5-min

Return type
quantity (float)

get_uncntrl_wh_load()

This simulates the waterheater model without

Returns
48-hours forecast of non transactive waterheater kw consumption without optimization (agent
participation)

Return type
list

inform_bid_da(DAprices)
Updated the DA _cleared_prices and DA_cleared_quantities attributes when informed by retail market agent

Parameters
DAprices (1ist) — cleared prices from the last DA market clearing, in $/kWh, provided by
retail market agent

inform_bid_rt (RTprice)

Updated the RT_cleared_prices and RT_cleared_quantities attributes when informed by retail market agent

Parameters
RTprice (float) — cleared price from the last RT market clearing, in $/kWh, provided by
retail market agent

obj_rule(m)
set_air_temp (fncs_str, model_diag_level, sim_time)
Sets the air_temp attribute
Parameters
» fncs_str (str) — FNCS message with temperature in degrees Fahrenheit
» model_diag_level (int) — Specific level for logging errors; set to 11
¢ sim_time (str) — Current time in the simulation; should be human-readable

set_da_cleared_quantity(BID, PRICE)
Convert the 4 point bids to a quantity with the known price

Parameters

5.3.

tesp_support package 297

TESP Documentation, Release 1.0

* BID (float) ((1,2)X4)-4 point bid
e PRICE (float) — cleared price in $/kWh

Returns
cleared quantity

Return type
quantity (float)

set_forecasted_schedule (forecasted_waterdraw_array)
Set the f_DA_schedule attribute

Parameters
forecasted_waterdraw_array (1ist) — forecasted waterdraw flow rate schedule in gal-
lons/min, provided by forecast agent

set_price_forecast (forecasted_price)
Set the f_DA_price attribute

Parameters
forecasted_price (1ist) - forecasted DA prices in $/kwh, provided by retail market agent

set_time (hour, minute)

Sets the current hour and minute
Parameters
¢ hour (int) - current hour
e minute (int) — current minute

set_wh_load(fncs_str)

Sets the water heater load attribute, if greater than zero

Parameters
fncs_str (str) — FNCS message with load in kW

set_wh_lower_state(fics_str)

Sets the lower element state attribute

Parameters
fncs_str (str) — FNCS message with ON/OFF status

set_wh_lower_temperature (fiucs_str, model_diag_level, sim_time)
Sets the lower tank temperature attribute

Parameters
* fncs_str (str) — FNCS message with temperature in degrees Fahrenheit
* model_diag_level (int) — Specific level for logging errors; set it to 11
¢ sim_time (str)— Current time in the simulation; should be human-readable

set_wh_upper_state(fucs_str)

Sets the upper element state attribute

Parameters
fncs_str (str) — FNCS message with ON/OFF status

298 Chapter 5. References

TESP Documentation, Release 1.0

set_wh_upper_temperature (fiucs_str, model_diag_level, sim_time)

Sets the upper tank temperature attribute
Parameters
¢ fncs_str (str) — FNCS message with temperature in degrees Fahrenheit
» model_diag_level (int) — Specific level for logging errors; set it to 11
e sim_time (str) — Current time in the simulation; should be human-readable

set_wh_wd_rate_val (fncs_str)

Sets the water draw rate attribute

Parameters
fncs_str (str) — FNCS message with wdrate value in gpm

test_function()
Test function with the only purpose of returning the name of the object
update_WH_his (model_diag_level, sim_time)

Update the historical memory of water heater based on updated readings, called by formulate_bid_rt every
5 mins

Parameters
» model_diag_level (int) — Specific level for logging errors; set it to 11

e sim_time (str) — Current time in the simulation; should be human-readable

tesp_support.dsot.water_heater_agent.test()

tesp_support.dsot.wind_gen_year module

Written by Ankit Singhal and Mitch Pelton This scripts use Tom’s wind model to generate wind power generation and
write in csv files. This script should be kept in tesp_support folder

It writes two files:

1. wind.csv: can be considered as actual wind value. It is written with 5 minute resolution. Tom’s model
generates hourly data which is interpolated to 5 minute (300 seconds) resolution.

2. wind_forecast.csv: a gaussian distribution of error is added to generate hourly wind forecast. First error is
added in 5 minute resolution data which then averaged to hourly data.

tesp_support.dsot.wind_gen_year.generate_wind_data_24hr (wind_plants)
tesp_support.dsot.wind_gen_year.make_wind_plants(ppc)

tesp_support.dsot.wind_gen_year.test()

5.3. tesp_support package 299

TESP Documentation, Release 1.0

tesp_support.matpower package

Support files for using MATPOWER - also see instructions on readthedocs for building the FNCS wrapper around the
MATLAB run-time

Submodules
tesp_support.matpower.matpower_dict module

tesp_support.matpower.matpower_dict.matpower_dict (name_root)

tesp_support.matpower.process_matpower module

tesp_support.matpower.process_matpower.process_matpower (name_root)

tesp_support.original package

Submodules
tesp_support.original.case_merge module

Combines GridLAB-D and agent files to run a multi-feeder TESP simulation
Public Functions:

merge_glm
combines GridLAB-D input files

merge_glm_dict
combines GridLAB-D metadata files

merge_agent_dict
combines the substation agent configuration files

merge_substation_yaml
combines the substation agent FNCS publish/subscribe files

merge_fncs_config
combines GridLAB-D FNCS publish/subscribe files

merge_gld_msg
combines GridLAB-D HELICS publish/subscribe configurations

merge_substation_msg
combines the substation agent HELICS publish/subscribe configurations

tesp_support.original.case_merge.key_present (val, ary)
tesp_support.original.case_merge.merge_agent_dict (target, sources, xfimva)
Combines the substation agent configuration files into target/target.json. The source files must already exist.
Parameters
* target (str) — the directory and root case name

* sources (list) — list of feeder names in the target directory to merge

300 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.original.case_merge.merge_£fncs_config(rarget, sources)
Combines GridLAB-D input files into target/target.txt. The source feeders must already exist.

Parameters
* target (str) — the directory and root case name
» sources (list) — list of feeder names in the target directory to merge
tesp_support.original.case_merge.merge_gld_msg(target, sources)
tesp_support.original.case_merge.merge_glm(rarget, sources, xfmva)
Combines GridLAB-D input files into target/target.glm. The source files must already exist.
Parameters
* target (str) — the directory and root case name
* sources (1ist) — list of feeder names in the target directory to merge

tesp_support.original.case_merge.merge_glm_dict (target, sources, xfmva)
Combines GridLAB-D metadata files into target/target.json. The source files must already exist.

Each constituent feeder has a new ID constructed from the NamePrefix + original base_feeder, then every child
object on that feeder will have its feeder_id, originally network_node, changed to match the new one.

Parameters
* target (str) — the directory and root case name
» sources (list) — list of feeder names in the target directory to merge
e xfmva (int)
tesp_support.original.case_merge.merge_substation_msg(target, sources)
tesp_support.original.case_merge.merge_substation_yaml (farget, sources)
Combines GridLAB-D input files into target/target.yaml. The source files must already exist.
Parameters
* target (str) — the directory and root case name

» sources (list) — list of feeder names in the target directory to merge

tesp_support.original.commercial_feeder_glm module
tesp_support.original.copperplate_feeder_gim module
tesp_support.original.curve module

Utility functions for use within tesp_support, including new agents.

class tesp_support.original.curve.ClearingType (value)
Bases: IntEnum

Describes the market clearing type

BUYER = 5

EXACT = 3

5.3. tesp_support package 301

TESP Documentation, Release 1.0

tesp_support.original.curve.aggregate_bid(crv)

class tesp_support.original.curve.curve

FAILURE = 1
NULL = 0
PRICE = 2

SELLER = 4

Aggregates the buyer curve into a quadratic or straight-line fit with zero intercept

Parameters

crv (curve) — the accumulated buyer bids

Returns

Qunresp, Qmaxresp, degree, c2 and cl scaled to MW instead of kW. c0 is always zero.

Return type

[float, float, int, float, float]

Bases: object

Accumulates a set of price, quantity bids for later aggregation. The default order is descending by price.

price
array of prices, in $/kWh

Type
[float]

quantity

array of quantities, in kW

Type
[float]

count

the number of collected bids

Type

int
total
the total kW bidding

Type
float

total_on

the total kW bidding that are currently on

Type

float

total_off

the total kW bidding that are currently off

Type
float

302

Chapter 5. References

TESP Documentation, Release 1.0

add_to_curve (price, quantity, is_on)

Add one point to the curve
Parameters
 price (float) — the bid price, should be $/kWhr
e quantity (float) — the bid quantity, should be kW
e is_on (bool) — True if the load is currently on, False if not

set_curve_order (flag)

Set the curve order (by price) to ascending or descending

Parameters
flag (str) — ‘ascending’ or ‘descending’

tesp_support.original.fncs module

Functions that provide access from Python to the FNCS library

Notes
Depending on the operating system, libfncs.dylib, libfncs.dll or libfncs.so must already be installed. Besides the defined
Python wrapper functions, these pass-through library calls are always needed:

* fncs.finalize: call after the simulation completes

* fncs.time_request (long): request the next time step; blocks execution of this process until FNCS grants the
requested time. Then, the process should check for messages from FNCS.

These pass-through calls are also available, but not used in TESP:
* fncs.route
* fncs.update_time_delta
e fncs.get_id
* fncs.get_simulator_count
. fncs. get_events_size
* fncs.get_keys_size

* fncs.die: stops FNCS and sends ‘die’ to other simulators

References

ctypes
FNCS

5.3. tesp_support package 303

https://docs.python.org/3/library/ctypes.html
https://github.com/FNCS/fncs/

TESP Documentation, Release 1.0

Examples

* under tesp_support, see substation.py, precool.py and tso_PYPOWER_f.py
 under examples, see loadshed/loadshed.py

tesp_support.original. fncs.agentGetEvents ()
Retrieve FNCS agent messages

Returns
concatenation of agent messages

Return type
str
tesp_support.original. fncs.agentPublish(value)
Publish a value over FNCS, under the configured simulator name / agent name
Parameters
value (str) — value
tesp_support.original. fncs.agentRegister (config=None)
Initialize the FNCS configuration for the agent interface

Parameters
config (str) — a ZPL file. If None (default), provide YAML file in FNCS_CONFIG_FILE
environment variable.

tesp_support.original.fncs.die()

Call FNCS die because of simulator error

tesp_support.original. fncs.finalize()
Call FNCS finalize to end connection with broker

tesp_support.original. fncs.get_event_at (i)

Retrieve FNCS message by index number after time_request returns

Returns
one decoded FNCS event

Return type
str

tesp_support.original. fncs.get_events()

Retrieve FNCS messages after time_request returns

Returns
tuple of decoded FNCS events

Return type
list
tesp_support.original.fncs.get_events_size()

Get the size of the event queue

tesp_support.original. fncs.get_id(Q)
Find the FNCS ID

tesp_support.original.fncs.get_key_at (i)
Get the topic by index number

304 Chapter 5. References

TESP Documentation, Release 1.0

Parameters
i (int) — the index number

Returns
decoded topic name

Return type
Str

tesp_support.original. fncs.get_keys()
Find the list of topics

Returns
decoded topic names

Return type
[str]

tesp_support.original. fncs.get_keys_size()
Get the size of the keys

tesp_support.original. fncs.get_name()
Find the FNCS simulator name

Returns
the name of this simulator as provided in the ZPL or YAML file

Return type
str

tesp_support.original.fncs.get_simulator_count ()
Find the FNCS simulator count

tesp_support.original. fncs.get_value (key)

Extract value from a FNCS message

Parameters
key (str) — the topic

Returns
decoded value

Return type
str

tesp_support.original. fncs.get_value_at (key, i)

For list publications, get the value by index
Parameters
* key (str) — the topic
e i (int) — the list index number

Returns
decoded value

Return type
Str

tesp_support.original. fncs.get_values (key)
For list publications, get the list of values

5.3. tesp_support package

305

TESP Documentation, Release 1.0

Parameters
key (str) — the topic

Returns
decoded values

Return type
[str]

tesp_support.original. fncs.get_values_size (key)
For list publications, find how many values were published

Parameters
key (str) — the topic

Returns
the number of values for this topic

Return type
int

tesp_support.original. fncs.get_version()
Find the FNCS version

Returns
major, minor and patch numbers

Return type
int, int, int

tesp_support.original.fncs.initialize (config=None)
Initialize the FNCS configuration

Parameters
config (str) — a ZPL file. If None (default), provide YAML file in FNCS_CONFIG_FILE
environment variable.

tesp_support.original.fncs.is_initialized()
Determine whether the FNCS library has been initialized

Returns
True if initialized, False if not.

Return type
bool

tesp_support.original. fncs.publish(key, value)
Publish a value over ENCS, under the simulator name

Parameters
* key (str) — topic under the simulator name
e value (str) — value

tesp_support.original. fncs.publish_anon(key, value)

Publish a value over FNCS, under the ‘anonymous’ simulator name
Parameters
* key (str) — topic under ‘anonymous’

e value (str) — value

306 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.original. fncs.route(sender, receiver, key, value)

Route a value over FNCS from sender to receiver
Parameters
* sender (str) — simulator routing the message
* receiver (str) - simulator to route the message to
* key (str) — topic under the simulator name
e value (str) — value

tesp_support.original. fncs.time_request (time)
FNCS time request

Parameters
time (int) — requested time.

tesp_support.original. fncs.update_time_delta(delta)

Update simulator time delta value

Parameters
delta (int) — time delta.

tesp_support.original.gim_dictionary module

Functions to create metadata from a GridLAB-D input (GLM) file

Metadata is written to a JSON file, for convenient loading into a Python dictionary. It can be used for agent con-
figuration, e.g., to initialize a forecasting model based on some nominal data. It’s also used with metrics output in
post-processing.

Public Functions:

glm_dict
Writes the JSON metadata file.

tesp_support.original.glm_dictionary.append_include_file(lines, fname)

Parameters
e lines (list<str>)
* fname (string)

tesp_support.original.glm_dictionary.ercotMeterName (objname)
Enforces the meter naming convention for ERCOT

Replaces anything after the last _ with mtr.

Parameters
objname (str) — the GridLAB-D name of a house or inverter

Returns
The GridLAB-D name of upstream meter

Return type
str

5.3. tesp_support package 307

TESP Documentation, Release 1.0

tesp_support.original.glm_dictionary.glm_dict(name_root, ercot=False, te30=False)
Writes the JSON metadata file from a GLM file

This function reads name_root.glm and writes [name_root]_glm_dict.json The GLM file should have some me-
ters and triplex_meters with the bill_mode attribute defined, which identifies them as billing meters that parent
houses and inverters. If this is not the case, ERCOT naming rules can be applied to identify billing meters.

Parameters
* name_root (str) — path and file name of the GLM file, without the extension
* ercot (bool) —request ERCOT billing meter naming. Defaults to false.

* te30 (bool) — request hierarchical meter handling in the 30-house test harness. Defaults to
false.

tesp_support.original.glm_dictionary.isCommercialHouse (house_class)

tesp_support.original.glm_dictionary.ti_enumeration_string(fok)

if thermal_integrity_level is an integer, convert to a string for the metadata

tesp_support.original.hvac_agent module

Class that controls the responsive thermostat for one house.

Implements the ramp bidding method, with HVAC power as the bid quantity, and thermostat setting changes as the
response mechanism.

class tesp_support.original.hvac_agent.hvac(hvac_dict, key, aucObj)
Bases: object
This agent manages thermostat setpoint and bidding for a house
Parameters
* hvac_dict (dict) — dictionary row for this agent from the JSON configuration file
 key (str) - name of this agent, also key for its dictionary row
* aucObj (simple_auction) — the auction this agent bids into

name
name of this agent

Type

str

control_mode
control mode from dict (CN_RAMP or CN_NONE, which still implements the setpoint schedule)

Type

str

houseName
name of the corresponding house in GridLAB-D, from dict

Type
str

308 Chapter 5. References

TESP Documentation, Release 1.0

meterName
name of the corresponding triplex_meter in GridLAB-D, from dict

Type

str
period
market clearing period, in seconds, from dict

Type
float

wakeup_start
hour of the day (0..24) for scheduled weekday wakeup period thermostat setpoint, from dict

Type

float
daylight_start
hour of the day (0..24) for scheduled weekday daytime period thermostat setpoint, from dict

Type
float

evening_start
hour of the day (0..24) for scheduled weekday evening (return home) period thermostat setpoint, from dict

Type

float
night_start
hour of the day (0..24) for scheduled weekday nighttime period thermostat setpoint, from dict

Type
float

wakeup_set

preferred thermostat setpoint for the weekday wakeup period, in deg F, from dict

Type

float
daylight_set
preferred thermostat setpoint for the weekday daytime period, in deg F, from dict

Type
float

evening_set
preferred thermostat setpoint for the weekday evening (return home) period, in deg F, from dict

Type
float

night_set

preferred thermostat setpoint for the weekday nighttime period, in deg F, from dict

Type

float

5.3. tesp_support package 309

TESP Documentation, Release 1.0

weekend_day_start
hour of the day (0..24) for scheduled weekend daytime period thermostat setpoint, from dict

Type

float
weekend_day_set
preferred thermostat setpoint for the weekend daytime period, in deg F, from dict

Type
float

weekend_night_start
hour of the day (0..24) for scheduled weekend nighttime period thermostat setpoint, from dict

Type

float
weekend_night_set
preferred thermostat setpoint for the weekend nighttime period, in deg F, from dict

Type
float

deadband

thermostat deadband in deg F, invariant, from dict

Type

float
offset_limit
maximum allowed change from the time-scheduled setpoint, in deg F, from dict

Type
float

ramp

bidding ramp denominator in multiples of the price standard deviation, from dict

Type

float
price_cap
the highest allowed bid price in $/kwh, from dict

Type
float

bid_delay

from dict, not implemented

Type
float

use_predictive_bidding

from dict, not implemented

Type

float

310 Chapter 5. References

TESP Documentation, Release 1.0

std_dev
standard deviation of expected price, determines the bidding ramp slope, initialized from aucObj

Type

float

mean
mean of the expected price, determines the bidding ramp origin, initialized from aucObj
Type
float
Trange
the allowed range of setpoint variation, bracketing the preferred time-scheduled setpoint

Type

float
air_temp
current air temperature of the house in deg F
Type
float
hvac_kw
most recent non-zero HVAC power in kW, this will be the bid quantity

Type

float
mtr_v
current line-neutral voltage at the triplex meter
Type
float
hvac_on
True if the house HVAC is currently running

Type
bool

basepoint
the preferred time-scheduled thermostat setpoint in deg F

Type
float

setpoint
the thermostat setpoint, including price response, in deg F

Type
float

bid_price

the current bid price in $/kwh

Type

float

5.3. tesp_support package 311

TESP Documentation, Release 1.0

cleared_price

the cleared market price in $/kwh

Type

float

bid_accepted()
Update the thermostat setting if the last bid was accepted

The last bid is always “accepted”. If it wasn’t high enough, then the thermostat could be turned up.p

Returns
True if the thermostat setting changes, False if not.

Return type
bool

change_basepoint (hod, dow)
Updates the time-scheduled thermostat setting

Parameters
* hod (float) — the hour of the day, from 0 to 24
¢ dow (int) — the day of the week, zero being Monday

Returns
True if the setting changed, False if not

Return type
bool

formulate_bid()
Bid to run the air conditioner through the next period

Returns
bid price in $/kwh, bid quantity in kW and current HVAC on state, or None if not bidding

Return type
[float, float, bool]

inform_bid(price)
Set the cleared_price attribute

Parameters
price (float) — cleared price in $/kwh

set_air_temp_£from_fncs_str(val)

Sets the air_temp attribute

Parameters
val (str) — FNCS message with temperature in degrees Fahrenheit

set_air_temp_from_helics(val)
set_hvac_load_from_fncs_str(val)
Sets the hvac_load attribute, if greater than zero

Parameters
val (str) — FNCS message with load in kW

set_hvac_load_from_helics (val)

312 Chapter 5. References

TESP Documentation, Release 1.0

set_hvac_state_from_fncs_str(val)

Sets the hvac_on attribute

Parameters
val (str) — FNCS message with state, ON or OFF

set_hvac_state_from_helics(val)
set_voltage_from_fncs_str(val)
Sets the mtr_v attribute

Parameters
val (str) — FNCS message with meter line-neutral voltage

set_voltage_from_helics(val)

tesp_support.original.parse_msout module

tesp_support.original.parse_msout.next_matrix(fp, var)
tesp_support.original .parse_msout.next_val (fp, var, binteger=True)

tesp_support.original.parse_msout.read_most_solution(fname="msout.txt")

tesp_support.original.player_f module

tesp_support.original.player_f.load_player_loop_f (casename, keyName)

tesp_support.original.precool module

Classes for NIST TE Challenge 2 example

The precool_loop class manages time stepping and FNCS messages for the precooler agents, which adjust thermostat
set points in response to time-of-use rates and over voltages. The precooler agents also estimate house equivalent
thermal parameter (ETP) models based on total floor area, number of stories, number of exterior doors and estimated
thermal integrity level. This ETP estimate serves as an example for other agent developers; it’s not actually used by the
precooler agent.

Public Functions:

precooler_loop
Initializes and runs the precooler agents.

tesp_support.original.precool. fncs_precool_loop (nhours, metrics_root, dict_root, response)

Function that supervises FNCS messages and time stepping for precooler agents

Opens metrics_root_agent_dict.json and metrics_root_glm_dict.json for configuration. Writes pre-
cool_metrics_root.json at completion.

Parameters
e nhours (float) — number of hours to simulate
e metrics_root (str)— name of the case, without file extension

e dict_root (str) - repeat metrics_root, or the name of a shared case dictionary without file
extension

5.3. tesp_support package 313

TESP Documentation, Release 1.0

» response (str) — combination of Price and/or Voltage

tesp_support.original.precool.helics_precool_loop (nhours, metrics_root, dict_root, response,
helicsConfig)

Function that supervises FNCS messages and time stepping for precooler agents

Opens metrics_root_agent_dict.json and metrics_root_glm_dict.json for configuration. Writes pre-
cool_metrics_root.json at completion.

Parameters
e nhours (float) — number of hours to simulate
* metrics_root (str)— name of the case, without file extension

e dict_root (str) - repeat metrics_root, or the name of a shared case dictionary without file
extension

» response (str) — combination of Price and/or Voltage
* helicsConfig (str)— name for HELICS message file

tesp_support.original.precool.precool_loop (nhours, metrics_root, dict_root, response='PriceVoltage’,
helicsConfig=None)

Wrapper for inner_substation_loop
When inner_substation_loop finishes, timing and memory metrics will be printed for non-Windows platforms.

class tesp_support.original.precool.precooler (name, agentrow, gldrow, k, mean, stddev, lockout_time,
precooling_quiet, precooling_off , bPrice, bVoltage)

Bases: object

This agent manages the house thermostat for time-of-use and overvoltage responses.

References

NIST TE Modeling and Simulation Challenge
Parameters

* name (str) — name of this agent
* agentrow (dict) — row from the FNCS configuration dictionary for this agent
* gldrow (dict) — row from the GridLAB-D metadata dictionary for this agent’s house
* k (float) — bidding function denominator, in multiples of stddev
* mean (float) — mean of the price
» stddev (float) — standard deviation of the price
* lockout_time (float) — time in seconds between allowed changes due to voltage
» precooling_quiet (float) - time of day in seconds when precooling is allowed

» precooling_off (float) - time of day in seconds when overvoltage precooling is always
turned off

name

name of this agent

Type

str

314 Chapter 5. References

https://www.nist.gov/engineering-laboratory/smart-grid/hot-topics/transactive-energy-modeling-and-simulation-challenge

TESP Documentation, Release 1.0

meterName

name of the corresponding triplex_meter in GridLAB-D, from agentrow

Type

str
night_set
preferred thermostat setpoint during nighttime hours, deg F, from agentrow

Type
float

day_set

preferred thermostat setpoint during daytime hours, deg F, from agentrow

Type

float
day_start_hour
hour of the day when daytime thermostat setting period begins, from agentrow

Type
float

day_end_hour

hour of the day when daytime thermostat setting period ends, from agentrow

Type

float
deadband

thermostat deadband in deg F, invariant, from agentrow, from agentrow

Type
float

vthresh

meter line-to-neutral voltage that triggers precooling, from agentrow

Type

float

toffset

temperature setpoint change for precooling, in deg F, from agentrow

Type
float
k
bidding function denominator, in multiples of stddev
Type
float
mean

mean of the price

Type

float

5.3. tesp_support package 315

TESP Documentation, Release 1.0

stddev
standard deviation of the price

Type

float

lockout_time
time in seconds between allowed changes due to voltage
Type
float
precooling_quiet
time of day in seconds when precooling is allowed

Type

float

precooling_off
time of day in seconds when overvoltage precooling is always turned off
Type
float
air_temp
current air temperature of the house in deg F

Type

float
mtr_v
current line-neutral voltage at the triplex meter
Type
float
basepoint
the preferred time-scheduled thermostat setpoint in deg F

Type

float
setpoint
the thermostat setpoint, including price response, in deg F

Type
float

lastchange
time of day in seconds when the setpoint was last changed

Type
float

precooling

True if the house is precooling, False if not

Type
bool

316 Chapter 5. References

TESP Documentation, Release 1.0

ti

thermal integrity level, as enumerated for GridLAB-D, from gldrow

Type

int
sqft (float
total floor area in square feet, from gldrow

stories

number of stories, from gldrow

Type
int

doors

number of exterior doors, from gldrow

Type

int
UA

heat loss coeflicient

Type
float

CA

total air thermal mass

Type

float

interior mass surface conductance

Type
float

M

total house thermal mass

Type

float

check_setpoint_change (hour_of_day, price, time_seconds)

Update the setpoint for time of day and price

Parameters

* hour_of_day (float) - the current time of day, 0..24

* price (float) - the current price in $/kwh

¢ time_seconds (1long long) — the current FNCS time in seconds

Returns

True if the setpoint changed, False if not

Return type
bool

5.3.

tesp_support package

317

TESP Documentation, Release 1.0

get_temperature_deviation()

For metrics, find the difference between air temperature and time-scheduled (preferred) setpoint

Returns

absolute value of deviation

Return type

float

make_etp_model ()

Sets the ETP parameters from configuration data

References

Thermal Integrity Table Inputs and Defaults

set_air_temp (val)

Set the air_temp member variable

Parameters

val (str) — FNCS/HELICS message with temperature in degrees Fahrenheit

set_voltage (val)

Sets the mtr_v attribute

Parameters

val (str) — HELICS message with meter line-neutral voltage

set_voltage_£f (val)

Sets the mtr_v attribute

Parameters

val (str) — FNCS message with meter line-neutral voltage

tesp_support.original.prep_eplus module

tesp_support.original
tesp_support.original
tesp_support.original
tesp_support.original
tesp_support.original
tesp_support.original
tesp_support.original

tesp_support.original

.prep_eplus
.prep_eplus
.prep_eplus
.prep_eplus
.prep_eplus
.prep_eplus

.prep_eplus

.prep_eplus.

configure_eplus(caseConfig, template_dir)

.make_gld_eplus_case(fname, bGlmReady=False)
.prepare_bldg_dict (caseConfig)

.prepare_glm_dict (caseConfig)
.prepare_glm_file(caseConfig)
.prepare_glm_helics(caseConfig, fedMeters, fedLoadNames)
.prepare_run_script (caseConfig, fedMeters)

.writeGlmClass (theseLines, thisClass, op)

318

Chapter 5. References

http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide#Thermal_Integrity_Table_Inputs_and_Defaults

TESP Documentation, Release 1.0

tesp_support.original.prep_precool module

Writes the precooling agent and GridLAB-D metadata for NIST TE Challenge 2 example
Public Functions:

prep_precool
writes the JSON and YAML files

tesp_support.original.prep_precool.prep_precool (name_root, time_step=15)
Sets up agent configurations for the NIST TE Challenge 2 example

Reads the GridLAB-D data from name_root.glm; it should contain houses with thermal_integrity_level at-
tributes. Writes:

* [name_root]_agent_dict.json, contains configuration data for the precooler agents
* [name_root]_precool.yaml, contains FNCS subscriptions for the precooler agents

* [name_root]_gridlabd.txt, a GridLAB-D include file with FNCS publications and subscriptions

Parameters
e name_root (str) — the name of the GridLAB-D file, without extension

* time_step (int) — time step period

tesp_support.original.prep_substation module

Sets up the FNCS and agent configurations for te30 and sgipl examples

This works for other TESP cases that have one GridLAB-D file, one EnergyPlus model, and one PYPOWER model.
Use tesp_case or tesp_config modules to specify supplemental configuration data for these TESP cases, to be provided
as the optional jsonfile argument to prep_substation.

Public Functions:

prep_substation
processes a GridLAB-D file for one substation and one or more feeders

tesp_support.original.prep_substation.ProcessGLM(fileroot)
Helper function that processes one GridLAB-D file

Reads fileroot.glm and writes:
e [fileroot]_agent_dict.json, contains configuration data for the simple_auction and hvac agents
e [fileroot]_substation.yaml, contains FNCS subscriptions for the psimple_auction and hvac agents
e [fileroot]_gridlabd.txt, a GridLAB-D include file with FNCS publications and subscriptions
e [fileroot]_substation.json, contains HELICS subscriptions for the psimple_auction and hvac agents
e [fileroot]_gridlabd.json, a GridLAB-D include file with HELICS publications and subscriptions

Parameters
fileroot (str) — path to and base file name for the GridLAB-D file, without an extension

5.3. tesp_support package 319

TESP Documentation, Release 1.0

tesp_support.original.prep_substation.prep_substation(gidfileroot, jsonfile=", bus_id=None)
Process a base GridLAB-D file with supplemental JSON configuration data

If provided, this function also reads jsonfile as created by fesp_config and used by fesp_case. This supplemen-
tal data includes time-scheduled thermostat set points (NB: do not use the scheduled set point feature within
GridLAB-D, as the first FNCS messages will erase those schedules during simulation). The supplemental data
also includes time step and market period, the load scaling factor to PYPOWER, ramp bidding function parame-
ters and the EnergyPlus connection point. If not provided, the default values from te30 and sgipl examples will
be used.

Parameters

» gldfileroot (str) — path to and base file name for the GridLAB-D file, without an exten-
sion

» jsonfile (str)-fully qualified path to an optional JSON configuration file (if not provided,
an E+ connection to Eplus_load will be created)

* bus_id — substation bus identifier

tesp_support.original.process_agents module

Functions to plot data from GridLAB-D substation agents
Public Functions:

process_agents
Reads the data and metadata, then makes the plots.

tesp_support.original.process_agents.plot_agents(diction, save_file=None, save_only=False)

tesp_support.original.process_agents.process_agents (name_root, diction_name=", save_file=None,
save_only=False, print_dictionary=False)

Plots cleared price, plus bids from the first HVAC controller

This function reads auction_[name_root]_metrics.json and controller_[name_root]_metrics.json for the data; it
reads [name_root]_glm_dict.json for the metadata. These must all exist in the current working directory. Makes
one graph with 2 subplots:

1. Cleared price from the only auction, and bid price from the first controller

2. Bid quantity from the first controller

Parameters

* name_root (str) — name of the TESP case, not necessarily the same as the GLM case,
without the extension

* diction_name (str)— metafile name (with json extension) for a different GLM dictionary,
if it’s not [name_root]_glm_dict.json. Defaults to empty.

» save_file (str) — name of a file to save plot, should include the png or pdf extension to
determine type.

» save_only (bool) — set True with save_file to skip the display of the plot. Otherwise, script
waits for user keypress.

* print_dictionary (bool) — set True to print dictionary.

320 Chapter 5. References

TESP Documentation, Release 1.0

tesp_support.original.process_agents.read_agent_metrics(path, name_root, diction_name="",
print_dictionary=False)

tesp_support.original.residential_feeder_glm module
tesp_support.original.simple_auction module

Double-auction mechanism for the 5-minute markets in te30 and sgipl examples

The substation_loop module manages one instance of this class per GridLAB-D substation.

Todo:
* Initialize and update price history statistics
 Allow for adjustment of clearing_scalar
» Handle negative price bids from HVAC agents, currently they are discarded

* Distribute marginal quantities and fractions; these are not currently applied to HVACs

2021-10-29 TDH: Key assumptions we need to refactor out of this: - This is a retail market working under a wholesale
market. We want something more general that can operate at any market level. - Load state is not necessary information
to run a market. PNNL TSP has traditionally had the construct of responsive and unresponsive loads and I think the
idea is crucial for being able to get good quadratic curve fits on the demand curve (by lopping off the unresponsive
portion) but I think we should refactor this so that these assumptions are not so tightly integrated with the formulation.

class tesp_support.original.simple_auction.simple_auction(diction, key)
Bases: object

This class implements a simplified version of the double-auction market embedded in GridLAB-D.

References

Market Module Overview - Auction
Parameters
e diction (diction) — arow from the agent configuration JSON file

* key (str) — the name of this agent, which is the market key from the agent configuration
JSON file
name
the name of this auction, also the market key from the configuration JSON file

Type

str
std_dev

the historical standard deviation of the price, in $/kwh, from diction

Type
float

5.3. tesp_support package 321

http://gridlab-d.shoutwiki.com/wiki/Market_Auction

TESP Documentation, Release 1.0

mean

the historical mean price in $/kwh, from diction

Type

float

price_cap

the maximum allowed market clearing price, in $/kwh, from diction

Type
float

max_capacity_reference_bid_quantity

this market’s maximum capacity, likely defined by a physical limitation in the circuit(s) being managed.

Type

float
statistic_mode

always 1, not used, from diction

Type
int

stat_mode

always ST_CURR, not used, from diction

Type

str

stat_interval

always 86400 seconds, for one day, not used, from diction

Type
str

stat_type

always mean and standard deviation, not used, from diction

Type

str
stat_value
always zero, not used, from diction

Type
str

curve_buyer
data structure to accumulate buyer bids
Type
curve
curve_seller

data structure to accumulate seller bids

Type

curve

Chapter 5. References

TESP Documentation, Release 1.0

refload

the latest substation load from GridLAB-D. This is initially assumed to be all unresponsive and using the
load state parameter when adding demand bids (which are generally price_responsive) all loads that bid
and are on are removed from the assumed unresponsive load value

Type

float

1mp

the latest locational marginal price from the bulk system market

Type

float

unresp

unresponsive load, i.e., total substation load less the bidding, running HVACs

Type

float

agg_unresp
aggregated unresponsive load, i.e., total substation load less the bidding, running HVACs
Type
float
agg_resp_max
total load of the bidding HVACs

Type
float

agg_deg
degree of the aggregate bid curve polynomial, should be 0 (zero or one bids), 1 (2 bids) or 2 (more bids)

Type
int

agg_c2
second-order coefficient of the aggregate bid curve

Type

float
agg_cl
first-order coefficient of the aggregate bid curve

Type

float
clearing_type
describes the solution type or boundary case for the latest market clearing
Type
ClearingType
clearing_quantity
quantity at the last market clearing

Type

float

5.3. tesp_support package 323

TESP Documentation, Release 1.0

clearing_price

price at the last market clearing

Type
float

marginal_quantity
quantity of a partially accepted bid

Type

float

marginal_frac

fraction of the bid quantity accepted from a marginal buyer or seller

Type
float

clearing_scalar
used for interpolation at boundary cases, always 0.5

Type

float
add_unresponsive_load (quantity)
aggregate_bids()
Aggregates the unresponsive load and responsive load bids for submission to the bulk system market

clear_bids()

Re-initializes curve_buyer and curve_seller, sets the unresponsive load estimate to the total substation load.

clear_market (tnext_clear=0, time_granted=0)
Solves for the market clearing price and quantity

Uses the current contents of curve_seller and curve_buyer. Updates clearing_price, clearing_quantity,
clearing_type, marginal_quantity and marginal_frac.

Parameters

¢ tnext_clear (int) — next clearing time in seconds, should be <= time_granted, for the
log file only

e time_granted (int) — the current time in seconds, for the log file only

collect_bid(bid)
Gather HVAC bids into curve_buyer

Also adjusts the unresponsive load estimate, by subtracting the HVAC power if the HVAC is on.

Parameters
bid ([float, float, bool])- price in $/kwh, quantity in kW and the HVAC on state

initAuction()
Sets the clearing_price and lmp to the mean price

2021-10-29 TDH: TODO - Any reason we can’t put this in constructor?

set_lmp (Imp)
Sets the Imp attribute

Parameters
Imp (£Iloat) — locational marginal price from the bulk system market

324 Chapter 5. References

TESP Documentation, Release 1.0

set_refload(kw)
Sets the refload attribute

Parameters
kw (float) — GridLAB-D substation load in kw

supplier_bid(bid)
Gather supplier bids into curve_seller
Use this to enter curves in step-wise blocks.

Parameters
bid ([float, float])-— price in $/kwh, quantity in kW

surplusCalculation(tnext_clear=0, time_granted=0)
Calculates consumer surplus (and its average) and supplier surplus.

This function goes through all the bids higher than clearing price from buyers to calculate consumer surplus,
and also accumulates the quantities that will be cleared while doing so. Of the cleared quantities, the
quantity for unresponsive loads are also collected. Then go through each seller to calculate supplier surplus.
Part of the supplier surplus corresponds to unresponsive load are excluded and calculated separately.

Parameters

¢ tnext_clear (int) — next clearing time in seconds, should be <= time_granted, for the
log file only

* time_granted (int) — the current time in seconds, for the log file only

update_statistics()

Update price history statistics - not implemented

tesp_support.original.substation_f module

Manages the simple_auction and hvac agents for the te30 and sgipl examples
Public Functions:

substation_loop_f
initializes and runs the agents

Todo:

* Getting an overflow error when killing process - investigate whether that happens if simulation runs to completion
* Allow changes in the starting date and time; now it’s always midnight on July 1, 2013

* Allow multiple markets per substation, e.g., S-minute and day-ahead for the DSO+T study

5.3. tesp_support package 325

TESP Documentation, Release 1.0

tesp_support.original.tesp_case module
tesp_support.original.tesp_config module
tesp_support.original.tesp_monitor module

Presents a GUI to launch a TESP simulation and monitor its progress
Public Functions:

show_tesp_monitor
Initializes and runs the monitor GUI

References

Graphical User Interfaces with Tk
Matplotlib Animation

class tesp_support.original.tesp_monitor.TespMonitorGUI (master, HELICS=True)
Bases: object

Manages a GUI with 4 plotted variables, and buttons to stop TESP

The GUI reads a JSON file with scripted shell commands to launch other HELICS/FNCS federates, and a YAML
file with HELICS/FNCS subscriptions to update the solution status. Both JSON and YAML files are written by
tesp.tesp_config The plotted variables provide a sign-of-life and sign-of-stability indication for each of the major
federates in the te30 or sgipl examples, namely GridLAB-D, PYPOWER, EnergyPlus, and the substation_loop
that manages a simple_auction with multiple hvac agents. If a solution appears to be unstable or must be stopped
for any other reason, exiting the solution monitor will do so.

The plots are created and updated with animated and bit-blitted Matplotlib graphs hosted on a TkInter GUI.
When the JSON and YAML files are loaded, the x axis is laid out to match the total TESP simulation time range.

Parameters
master

root

the TCL Tk toolkit instance

Type
Tk

top
the top-level TCL Tk Window

Type
Window

labelvar

used to display the monitor JSON configuration file path

Type
StringVar

hrs

x-axis data array for time in hours, shared by all plots

326 Chapter 5. References

https://docs.python.org/3/library/tk.html
https://matplotlib.org/api/animation_api.html

TESP Documentation, Release 1.0

Type
[float]
yo®
y-axis data array for PYPOWER bus voltage
Type
[float]
yl
y-axis data array for EnergyPlus load
Type
[float]
y21lmp
y-axis data array for PYPOWER LMP
Type
[float]
y2auc
y-axis data array for simple_auction cleared_price
Type
[float]
y3fncs
y-axis data array for GridLAB-D load via FNCS
Type
[float]
y3gld
y-axis data array for sample-and-hold GridLAB-D load
Type
[float]
gld_load
the most recent load published by GridLAB-D; due to the deadband, this value isn’t necessary published at
every FNCS time step
Type
float
yOmin
the first y axis minimum value
Type
float
yOmax
the first y axis maximum value
Type
float
ylmin

the second y axis minimum value

5.3. tesp_support package 327

TESP Documentation, Release 1.0

Type

float

ylmax
the second y axis maximum value

Type
float

y2min
the third y axis minimum v